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Abstract

We develop a model of multi-period debt structure. A simple trade-o↵ between the ter-

mination threat required to make repayments incentive compatible and the desire to avoid

early liquidation determines the number of repayments, their timing, and repayment amounts.

For mature firms with risky cash flows, frequent repayments maximize pledgeable income—for

example, by rolling over short-term debt. In contrast, for firms with cash-flow growth or sig-

nificant risk-free cash flows, adding risky repayments can decrease pledgeable income. In some

cases, a single risky bullet repayment maximizes pledgeable income, e↵ectively a long-term debt

contract.
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How do firms choose the term structure of their debt? While a large literature has investigated

why firms use debt to raise financing for investments,1 we know much less about the determinants

of the number of repayment dates, their timing, and the respective repayment amounts. To shed

light on these issues, this paper develops a model of multi-period debt financing in a setting with

unverifiable cash flow. In our model, a rich term structure of debt emerges from a simple trade-o↵

between providing the firm with incentives to repay and preventing costly early liquidation.

The main friction in our model is classic incomplete contracting: Cash flow is non-verifiable, such

that the entrepreneur can abscond with the cash flow instead of repaying debt. As in Bolton and

Scharfstein (1990, 1996) and Hart and Moore (1998), debt induces a termination threat that makes

repayment incentive compatible. However, in contrast to the two-period nature of these papers,

in our model the firm produces a sequence of non-contractible cash flows over many periods. This

multi-period setup allows us to study the optimal debt structure: How many repayment dates

should there be? What should be the timing and size of those repayments?

The key trade-o↵ that determines the optimal debt structure balances default risk with the

incentives necessary to ensure repayment. Repayment incentives derive from the threat of early

termination. Specifically, the firm’s creditors commit to liquidate if the firm defaults on any of its

contractual repayments. Early liquidation is costly because it leads to the loss of a longer stream

of future cash flows. The entrepreneur therefore would like to schedule debt payments as late as

possible. However, there is a limit to how late repayments can credibly be made to investors:

Towards the end of the project, the entrepreneur’s continuation value is lower, leading to larger

incentives to divert the cash flow and default.

We first develop a baseline model, in which the firm generates a risky cash flow every period,

drawn independently from the same binary distribution (zero or positive). In this setting, we show

that a repayment profile with constantly spaced debt payments towards the end of the project is

1Classic contributions to this literature include models of costly state verifiation (Townsend (1979); Gale and
Hellwig (1985)), termination threat models of debt (Bolton and Scharfstein (1990, 1996); Hart and Moore (1994,
1998)), incentive-based theories of debt (Innes 1990), and theories based on information sensitivity (Gorton and
Pennacchi (1990); Dang et al. (2012)).
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optimal, where the spacing of repayment dates is determined by the riskiness of the firm’s cash

flows. On each repayment date, the firm pays back the entire realized period cash flow, in order

to minimize the number of risky payments. The cash flows between payment dates accrue to

the entrepreneur, thereby providing incentives to honor each of the contractual payments. All else

equal, the larger the amount of outside financing that the firm needs to raise, the larger the number

of repayment dates and the more front-loaded the repayment schedule.

This baseline model generates a number of key comparative statics on how cash-flow risk,

profitability, and leverage a↵ect the optimal debt structure. For example, when period cash flows

are riskier, the average repayment time decreases, consistent with classic empirical evidence on debt

maturity in Barclay and Smith (1995) and Stohs and Mauer (1996) and the more recent empirical

work on corporate debt maturity profiles by Choi et al. (2016). Higher profitability, on the other

hand, is associated with more backloaded repayments, consistent with the evidence in Guedes and

Opler (1996) and Qian and Strahan (2007). Higher leverage is associated with earlier repayment,

consistent with evidence on the debt structure of leveraged buyout deals in Axelson et al. (2013).

A key feature of our baseline model is that pledgeable income is maximized by scheduling as

many repayments as possible, subject to spacing these repayments such that they satisfy incentive

compatibility. As a consequence, mature firms (i.e., risky period cash flows but no cash-flow growth)

with large outside financing needs opt for earlier and more frequent debt payments. One natural

implementation is to roll over a sequence of short-term debt contracts, where the rollover frequency

is determined by the riskiness of the firm’s cash flows. This result therefore echoes and extends the

classic insight (Bolton and Scharfstein (1990, 1996) and Hart and Moore (1998)) that short-term

debt alleviates financing constraints arising from non-verifiable cash flows.

Interestingly, the result that a sequence of short-term debt contracts maximizes pledgeability

no longer holds under more general cash flow distributions. Our model therefore provides a unified

framework that can capture both incentives to finance with short-term debt (leading to maturity

mismatch) and incentives to finance with longer term debt (approximate matching of the maturities
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of assets and liabilities). Specifically, we point out two situations, in which limiting the number of

risky repayments maximizes pledgeable income.

First, when there is growth in the firm’s expected cash flows, pledgeable income is generally

maximized by a debt contract with relatively few risky repayments towards the end of the project’s

life (even though the firm could in principle add more repayment dates). In fact, in some cases a

single (bullet) repayment maximizes pledgeability. For growth firms, the optimal debt structure

therefore resembles long-term debt with debt maturity closer to the maturity of the firm’s assets.

Second, when the firm generates a positive minimum cash flow in each period, the debt contract

that maximizes pledgeable income depends on the riskiness of the firm. When the safe cash flow

component is large relative to total cash flow, pledgeability is maximized by o↵ering a safe repay-

ment in every period—essentially safe short-term debt. If, on the other hand, the risky part of the

cash flow makes up a significant fraction of the firm’s overall cash flow, pledgeability is maximized

by alternating between safe and risky repayments. While safe repayments occur throughout the

lifetime of the firm’s assets, risky repayments are scheduled towards the end of the project and need

to be appropriately spaced to preserve incentive compatibility. Moreover, increasing the number of

risky payments only raises pledgeability up to a point: Pledgeability is generally maximized with

a fixed number of risky repayments that is independent of the total number of periods. In this

case, the optimal debt structure resembles a combination of safe short-term debt and a number of

risky long-term bonds or loans. One natural implementation of this debt structure is a sequence of

coupon bonds with safe coupons and risky principal repayments.

Our paper contributes to the literature on optimal debt contracts. We build on the literature on

debt as a termination threat (in particular, Bolton and Scharfstein (1990, 1996); Hart and Moore

(1995, 1998); Berglöf and von Thadden (1994)). While these papers highlight the importance of

short-term debt (relative to asset maturity), the two-period nature of these models does not lend

itself to study the optimal repayment structure when multiple repayment dates are possible. The

papers that have extended termination-threat models to more periods, generally do not focus on the
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optimal term structure of debt repayments. For example, Hart and Moore (1994) characterize the

fastest and slowest way to repay in a deterministic multi-period setting, but because of the absence

of default risk, their model does not pin down the number and timing of repayments, which is the

focus of our paper.

Our approach also di↵ers from the literature on optimal financial contracting in dynamic settings

(e.g., DeMarzo and Fishman (2007); DeMarzo and Sannikov (2006)). These papers derive the

optimal financing contract in dynamic settings. In contrast, we restrict the contracting space to

debt contracts, which allows us to derive a rich set of novel predictions on optimal multi-period

debt structure.

More broadly, our paper is also related to the literature on debt maturity, albeit with a di↵er-

ent focus. We study how a firm’s debt stucture (including maturity) emerges from the inability to

verify cash flows. In contrast, classic theories of debt maturity have focused on private informa-

tion (Flannery (1986); Diamond (1991, 1993)), whereas the more recent literature has highlighted

strategic interaction among creditors (Cheng and Milbradt (2012)), the inability to commit to fi-

nancing policies (Brunnermeier and Oehmke (2013), He and Milbradt (2016)), and debt overhang

(Diamond and He (2014)).

Finally, our paper is related to a series of papers by Rampini and Viswanathan (2010, 2013),

who develop a multi-period model of financing subject to enforcement constraints. A key di↵er-

ence to our paper is the assumption regarding exclusion. In Rampini and Viswanathan (2010,

2013), no exclusion is possible, such that the optimal contract can be implemented by one-period

state-contingent debt contracts. In our paper, liquidation by creditors e↵ectively excludes the

entrepreneur from future investment, creating a non-trivial role for debt contracts of di↵erent ma-

turities. Moreover, in these models, as in the models of dynamic financing by Albuquerque and

Hopenhayn (2004) and Clementi and Hopenhayn (2006), there is no default on the equilibrium

path. The possibility of equilibrium default is a key feature of our model.
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1 Model Setup

We consider an entrepreneur who can set up a firm to undertake an investment project. The

investment requires an initial outlay of I at date t = 0. If funded, the project lasts for T discrete

periods. At each t 2 T the project generates a cash flow Xt, where T = {1, 2, . . . , T} denotes

the set of potential cash flow dates. The cash flow distribution at each date t is binary. With

probability 1
K , the project generates positive cash flow of K�, where � > 0 and K 2 Z+. With

probability 1� 1
K , the cash flow at date t is zero. Therefore, at each date t, the project yields an

expected cash flow of �, while the parameter K captures the riskiness of the project’s cash flows.2

We assume that the cash flow realizations Xt are serially uncorrelated. The assumption of binary

cash flows makes the analysis tractable and highlights the key tradeo↵s. We extend our analysis to

more general cash flow distributions in Section 5.2. The entrepreneur has cash at hand c and must

therefore finance the remainder D ⌘ I � c by raising outside financing.

We make two key assumptions about the contracting environment. First, we restrict our at-

tention to debt contracts with commitment to liquidate as the only means of outside financing

available to the firm. This distinguishes our analysis apart from the literature on optimal contract-

ing in dynamic settings (e.g., DeMarzo and Sannikov (2006); DeMarzo and Fishman (2007)). The

commitment to liquidate implies that the issues of renegotiation analyzed in Gromb (1994) do not

arise in our setting.3 Second, we assume that the entrepreneur cannot save. Rather, at each date

t, the entrepreneur consumes the cash flow net of any debt payments made at that date. This

no-savings assumption greatly simplifies our analysis, but it is not crucial for our main results. We

relax this assumption in Section 5.1, where we show that adding savings to the model does not

a↵ect the main economic insights from our model.

2As will become clear below, the assumption that K is an integer is for mathematical convenience only. Our
results are virtually unchanged without that assumption, except for the added notational complexity of having to
deal with integer constraints.

3Gromb (1994) shows that, in a multi-period setting, the ability to repeatedly renegotiate the debt contract can
severely constrain pledgeability. Due to the creditors’ ability to commit to liquidate, this issue does not arise in our
framework.
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A debt contract is then characterized by a sequence of promised repayments R = {Rt}, t 2 T ,

where, if at any date t the entrepreneur has promised a positive repayment Rt > 0 but does not pay,

the project is liquidated by the firm’s creditors. When the project is liquidated, neither the investor

nor the entrepreneur receive any future cash flows. In other words, the project’s liquidation value

is normalized zero and the entrepreneur cannot undertake another investment after liquidation,

either because he is excluded from credit markets or because, without the original lender, he has

lost access to his investment project. As long as liquidation has not occurred, at each date t the

entrepreneur consumes the cash flow net of any debt payments made at that date, Xt�Rt. Because

the entrepreneur cannot save, the firm can only use contemporaneous cash flow to make the debt

payment, so that feasibility of any debt repayment requires that Rt  Xt.4

The main contracting friction in our model is standard non-verifiability of cash flows. At any

date t the entrepreneur can abscond with the cash flow that realized in that period, allowing the

entrepreneur to default even when the realized cash flow is su�cient to make the promised repay-

ment Rt. Any credible sequence of debt repayments R must be therefore be incentive compatible.

Formally, denote by Vt the entrepreneur’s value function (which is also the firm’s equity value) at

the beginning of period t. Then, a debt contract R is incentive compatible if and only if Rt  Vt+1

for every t.

The debt contract R can be interpreted in a number of ways. In the most narrow interpreta-

tion, R is the payment schedule of a single debt contract that specifies multiple repayments over

time. Interpreted more broadly, R captures the firms aggregate debt structure, where individual

repayments Rt are potentially separate contracts (i.e., a portfolio of loans or bonds). While from

a theoretical perspective these two interpretations are equivalent, the broader interpretation will

be useful in linking our model to empirical evidence. Finally, as we will show below, the contract

R can also be implemented by a sequence of one-repayment-date (bullet) contracts that are rolled

4Note that our setup rules out making early repayments (for example, through callable bonds or loans). When
debt is callable, the borrower may have an incentive to call the debt and make early repayments whenever a cash
flow realizes on a non-repayment date. Callable instruments therefore e↵ectively allow the borrower to repay debt
using prior cash flow and are economically similar to the savings extension in Section 5.1.
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over at each repayment date.

We assume that both the entrepreneur and the investors are risk neutral. In addition, in-

vestors are perfectly competitive, such that any incentive compatible contract that provides an

total expected repayment of D is acceptable to investors. Given this assumption, the entrepreneur

then chooses a repayment schedule R to maximize her expected payo↵ at day 0. Formally, the

entrepreneur’s maximization problem is:

maxR V0

s.t. Rt  Vt+1 (IC)

D(R) = D (IR). (1)

The entrepreneur’s payo↵ Vt satisfies the following recursive and explicit formulations:

Vt = �+ Pr(Xt � Rt) (�Rt + Vt+1) (2)

=
T
X

i=t

i�1
Y

s=t

Pr (Xs � Rs)��
T
X

i=t

i
Y

s=t

Pr (Xs � Rs)Ri, (3)

and D(R) denotes the value to investors of a debt contract R, which is given by

D(R) =
T
X

t=0

Y

st

Pr(Xs � Rs)Rt. (4)

Using investors’ IR constraint (1), as well as the expressions for the entrepreneur’s payo↵ Vt and

the value of the debt contract to investors D(R) given in (2) and (4), we can then simplify the

entrepreneur’s value function V0 to

V0 =
T
X

i=0

i�1
Y

s=0

Pr (Xs � Rs)��D. (5)

Clearly, it is not in the interest of the firm to o↵er a debt contract that defaults with probability
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one in any period. Therefore, in equilibrium any promised payment Rt is weakly smaller than the

cash flow in that period, which we will refer to as the feasibility condition:5

Rt  K�. (6)

The main choice variable for the entrepreneur is whether he should promise a positive repayment

at any particular date t. To see this, denote the set of dates with positive repayments by Q ⌘ {t 2

T |Rt > 0}. Then, as the following lemma shows, it is the timing of repayments that matters for

the firm, while the exact size of each repayment can usually not be uniquely determined.

Lemma 1 For any two incentive compatible repayment schedules, R and R0, if Q(R) = Q(R0)

and D(R) = D(R0), then the entrepreneur is indi↵erent between R and R0.

Intuitively, Lemma 1 states that if two debt contracts R and R0 have identical repayment dates

and same expected values, then they yield the same expected payo↵s to the entrepreneur. This

result follows directly from the binary cash flow assumption: The probability of making a repayment

Rt 2 (0,K�] is Pr(X = K�) = 1
K , the probability of positive cash flow realization, regardless of

the size of the repayment. This is reflected in equation (5) in that any positive repayment Rt enters

the entrepreneur’s payo↵ only through the probability of default at date t. Therefore, only the

number and timing of payments Q is important, but not the size of each individual repayment.

5Suppose, in contrast, that the optimal contract contains a promised repayment Rt > K� for some t. Then the
entrepreneur will default with certainty at date t, even if the positive cash flow K� realizes. Then, the investor’s IR
constraint (1) holds only if the expected total repayments before period t are equal to D. However, if this is the case,
then the entrepreneur would adjust Rt to 0. This adjustment would not change the investors IR constraint (1), but
would give the entrepreneur a weakly larger payo↵ (strictly larger if t  T � 1).
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2 Optimal Debt Structure

2.1 Optimal Debt Structure: An Intuitive Derivation

The main trade-o↵ that determines optimal debt structure is between early liquidation and su�cient

pledgeability. On the one hand, the entrepreneur likes to make debt payments as late as possible.

By doing so, the project is less likely to be terminated early on, providing the entrepreneur higher

expected cash flows. On the other hand, the entrepreneur faces limits to how late he can credibly

promise to make repayments to investors. Towards the end of the project, the entrepreneur’s

continuation value is lower, such that he has larger incentives to divert the cash flow and default.

To see how this trade-o↵ shapes the firm’s optimal debt structure, it is instructive to start by

considering a firm with low outside financing needs D. The nature of the optimal debt structure

then emerges as we gradually increase the amount of required outside financing D. We build up

these results using several cases before moving to a general proposition that fully characterizes the

optimal debt repayment structure. The numbering of the cases will become clear as we move from

case to case.

Case 1-1: D 2
�

0, �
K

⇤

. We start by assuming that the amount of required outside financing

D is weakly less than �
K . Clearly, because VT+1 = 0, the entrepreneur cannot credibly promise to

make a payment to investors at date T. Therefore, incentive compatibility requires that RT = 0.

However, when D  �
K , the entrepreneur can raise D by o↵ering a single repayment of RT�1 = KD

to raise D. This payment is incentive compatible because the entrepreneur’s continuation value at

T � 1 is given by � (the expected cash flow at date T ), which, given D 2
�

0, �
K

⇤

, exceeds the date

T � 1 payment of KD:

RT�1 = KD  VT = �. (7)

A single repayment of KD at date T � 1 also satisfies the investor’s IR constraint (1), as D(R) =

1
KKD = D.

From equation (2), we then see that the entrepreneur’s continuation value at the beginning of
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date T � 1 is given by

VT�1 = �+
1

K

(��KD),

The overall payo↵ to the entrepreneur by

V0 = �+ V1 = ... = (T � 1)�+ VT�1 = T�+
1

K

(��KD). (8)

Note that even though the entrepreneur can potentially choose to make multiple repayments

or o↵er a single repayment before period T � 1, both of these options are not optimal. Intuitively,

promising multiple risky repayments ine�ciently increases default risk. Promising repayment earlier

than date T � 1 risks that the project is terminated unnecessarily prematurely. Therefore, any

alternative schedule with a single repayment of KD at t

0
< T � 1, which yields a payo↵ to the

entrepreneur of (t0 + 1)�+ 1
K [(T � t

0)��KD], is dominated by (8).

Case 1-2: D 2
�

�
K ,

2�
K

⇤

. When the required amount of outside financing D exceeds �
K , a

single repayment of KD at date T � 1 is no longer incentive compatible: When KD > �, this

payment would violate the IC constraint (7). To support a higher repayment, the entrepreneur then

optimally moves the single repayment date forward to T � 2. Because now the final two periods’

cash flows are left to the entrepreneur, the entrepreneur’s payo↵ from continuing past date T � 2

is given by VT�1 = 2�, which provides the upper bound for the incentive compatible repayment at

T � 2:

RT�2 = KD  VT�1 = 2�.

Therefore, when the required amount of financing D lies in the interval
�

�
K ,

2�
K

⇤

, the entrepreneur

can raise the required financing with a single repayment at date T � 2. Because any additional

repayment date would create unnecessary default risk, a single payment at date T �2 is the optimal

way to finance the project.

Case 1-K: D 2
⇣

(K�1)�
K ,�

i

. It is easy to see that as the amount of required outside financing

D continues to increase, the entrepreneur optimally keeps moving the single repayment forward
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Figure 1: This figure illustrates the range of outside financing needs for which financing is possible
with one repayment date, cases 1-1 to 1-K.

to maintain incentive compatibility. This is possible as long as the required single repayment

satisfies the feasibility constraint (6). This leads us to the last case in which financing with one

repayment date is possible, case 1-K, with a repayment of KD at date T �K. Analogous to before,

the entrepreneur’s continuation value VT�K+1 = K� allows for a maximum incentive-compatible

repayment RT�K = K�. However, note that at this point also the feasibility constraint (6) binds.

Therefore, D = � is the maximum amount of outside financing that can be raised with a single

repayment.

Figure 1 summarizes the cases in which financing with only one repayment date is possible

(cases 1-1 to 1-K).

Case 2-1: D 2
�

�,�+ �
K2

⇤

. When the required amount of outside financing D exceeds �,

a single repayment of KD (at any date) is no longer a feasible way to finance the project; the

required repayment would violate the feasibility condition (6). Therefore, the entrepreneur must

now promise repayments at two dates. The optimal way to do this is to move forward the existing
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repayment date from date T�K to T�K�1 and to add a second repayment at date T�1, resulting

in optimal repayment dates Q = {T � K � 1, T � 1}. Note that once there are two repayment

dates, the size of each repayment is no longer uniquely determined, except when D is at the upper

boundary of the interval (i.e., D = �+ �
K2 ). One possible contract (the fastest way to repay) is to

set the earlier repayment such that it just satisfies the feasibility constraint, RT�K�1 = K�, and

set the second repayment to raise the remainder, RT�1 = K

2(D ��).6 One can easily verify that

this contract satisfies investor’s IR condition (1),

D(R) =
1

K

RT�K�1 +
1

K

2
RT�1 = D.

Moreover, the contract is incentive compatible: For any D 2
�

�,�+ �
K2

⇤

the IC constraint at date

T � 1 is clearly satisfied,

RT�1 = K

2(D ��)  � = VT .

To check the IC constraint at date T �K � 1, note that, using (2), we can write the continuation

value after date T �K � 1 as

VT�K = �+ VT�K+1 = ... = (K � 1)�+ VT�1 = K�+
1

K

(�RT�1 +�).

Because RT�1 is incentive compatible, we have VT�K � K� = RT�K�1, such that RT�K�1 is

incentive compatible. Intuitively, leaving K periods of cash flow between the two repayment dates

to the entrepreneur makes sure that the repayment of K� at date T�K�1 is incentive compatible.

The second repayment at date T � 1 is bounded by �, by exactly the same intuition in case 1-1.

Finally, it is also easy to verify that the schedule R with RT�K�1 = K� and RT�1 = � attains

the upper bound of D = �+ �
K2 in this case.

Case 2-2: D 2
�

�+ �
K2 ,�+ 2�

K2

⇤

. As we increase D further, the optimal repayment dates

6Alternatively, the slowest way to repay is to set the final repayment to the maximum incentive compatible
amount, RT�1 = �, and to then set RT�K�1 = KD � �

K . As a result, any equilibrium contract satisfies RT�K�1 2�
K�� �

K ,K�
⇤
, imposing relatively tight bounds on the size of repayments.
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shift forward to Q = {T�K�2, T�2}. Specifically, compared with case 2-1, both repayment dates

are moved forward by one period. This increases pledgeability at the second (and last) repayment

date, while maintaining incentives to repay at the first repayment date. Similar to case 1-2, the

maximum incentive compatible repayment at T � 2 is VT�1 = 2�. By keeping K periods between

repayments maintains the incentive compatibility of the first repayment, which is at most K�.

The debt contract with RT�K�2 = K� and RT�2 = 2� then attains the upper bound of this case,

D = �+ 2�
K2 .

Case 2-K: D 2
⇣

�+ (K�1)�
K2 ,�+ �

K

i

. As we continue to increase D, at some point we arrive

at Case 2-K, which is the last case in which the required amount of financing can be raised with

two repayment dates, which occur at dates Q = {T � 2K,T �K}. To raise the maximum amount

of outside financing with two repayment dates, the entrepreneur o↵ers repayments of RT�2K =

RT�K = K�, which attains the maximum debt value of �+ �
K , the upper boundary of case 2-K.

At this point, the feasibility condition for both repayments binds. To borrow more, the entrepreneur

has to again increase the number of repayment dates. Cases 2-1 to 2-K are illustrated in Figure 2.

Based on the pattern that emerges above, we are now in a position to characterize the general

Case N-j, which has N repayments with the final repayment occuring at date T � j. Assume that

the amount of required outside financing falls into the interval

D 2
 

N�2
X

i=0

�

K

i
+

(j � 1)�

K

N
,

N�2
X

i=0

�

K

i
+

j�

K

N

#

.

Then the optimal repayment dates are given by Q = {T � (N�1)K�j, T � (N�2)K�j, ..., T �j}

and the maximum feasible and incentive compatible repayments are RT�nK�j = K� for all n =

1, 2, ..., N � 1, and RT�j = j� for the final repayment at date T � j. The expected value of this

debt contract is

D =
1

K

K�+
1

K

2
K�+ ...+

1

K

N�1
K�+

1

K

N
j�,

which is equal to the maximum amount of financing that can be raised in case N-j. The general
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Figure 2: This figure illustrates the range of outside financing needs for which financing is possible
with two repayment dates, Case 2-1 to Case 2-K.

case N-j is illustrated in Figure 3.

2.2 Optimal Debt Structure: General Characterization

Based on case N-j, we can now give a full characterization of the optimal repayment schedule Q.

Figure 3: This figure illustrates the general case N-j.
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Proposition 1 In an optimal debt contract, the set of repayment dates is

QN,j ⌘ {T � j, T �K � j, T � 2K � j, ..., T � (N � 1)K � j}

if and only if the required investment

D 2
 

N�2
X

i=0

�

K

i
+

(j � 1)�

K

N
,

N�2
X

i=0

�

K

i
+

j�

K

N

#

, (9)

which is a partition of all feasible investment amounts when (N, j) is any pair of positive integers

such that

T � (N � 1)K � j � 0.

In addition, when D equals any one of the cuto↵ values
PN�2

i=0
�
Ki +

j�
KN , the unique optimal debt

repayment schedule is given by

Rt =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

K�, if t 2 Q\{T � j}

j�, if t = T � j

0, otherwise.

Proposition 1 pins down the firm’s optimal debt structure. For a given required amount of

required outside financing D, the proposition uniquely characterizes the optimal repayment dates,

as well as the optimal payment amounts at each repayment date at the boundary of each of the

intervals in (9). At the boundaries, the incentive compatibility constraints bind at each of the

repayment dates, such that it is impossible to shift repayments between repayment dates in Q. In

between the boundaries of the intervals in (9), the repayment dates are still uniquely determined,

but the repayment amounts are not uniquely determined. As shown in Lemma 1, the entrepreneur

is then indi↵erent between all incentive compatible (and feasible) repayment patterns based on the

repayment dates Q.
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One key feature of the optimal repayment schedule is that, once the firm starts making re-

payments, these repayments are constantly spaced, separated by K periods to ensure incentive

compatibility. Intuitively, because each additional repayment date adds a discrete amount of addi-

tional default risk, firms do not smooth their repayments across all periods. Instead, it is optimal to

minimize the number of repayments, subject to incentive compatibility and feasibility constraints.7

When a repayment is missed, the firm is liquidated.8

Denoting by PI(N) the maximum pledgeable income of a debt contract with N  T
K risky

repayment dates, pledgeable income takes the form of a simple geometric sum,

PI(N) = �
N�1
X

n=0

1

K

n
. (10)

Intuitively, the maximum the firm can pledge with N repayment dates is N repayments of RT�nK =

K�, each weighted by the probability of making the n

th repayment 1
Kn , where n = 1, 2, ..., N .

Pledgeable income is therefore increasing in the number of repayments o↵ered by the firm. However,

because each additional repayment induces default risk, the firm chooses a repayment schedule that

minimizes the number of risky repayments subject to raising the required amount D. Therefore,

PI(N) allows us to pin down the number of payment dates of the optimal debt contract:

Corollary 1 The optimal debt contract has exactly N repayments, if

D 2
 

�
N�2
X

i=0

1

K

i
,�

N�1
X

i=0

1

K

i

#

. (11)

7As we show in Section 4.2, firms partially smooth repayments when there is a safe cash flow component, by
making a safe repayment every period and risky repayments periodically.

8Note that if the cash flow on a repayment date is not su�cient to make the contractual repayment, the firm is
generally not able to raise additional financing from another lender, unless is can directly dilute its existing debt.
The reason is that once repayments start, the firm has already promised almost all pledgeable future cash flows to
the original lender. In particular, when D is at any of the boundaries of (9), all pledgeable future cash flows are
exhausted at each repayment.
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2.3 Optimal Debt Structure: Implementation

While the optimal debt contract characterized above can be interpreted narrowly as one grand

contract that specifies all repayments, a second natural interpretation is that it reflects a firm’s

aggregate debt structure. For example, individual repayments could correspond to separate loans

or bonds. The repayment schedule R then captures the firm’s aggregate maturity profile (Choi

et al. (2016)). This second interpretation will be particularly useful when linking the predictions

of our model to the empirical literature (see Section 3).

Another interesting observation is that the optimal debt contract R can always be implemented

via a sequence of zero coupon bonds. Under this implementation, the firm borrows D at date zero

via a single zero coupon bond, with maturity equal to the first repayment date of the optimal debt

contract R. At the first repayment date, the firm makes a net repayment of Rt and rolls over the

remaining amount owed to lenders by issuing a new zero coupon bond that matures on the second

repayment date.9

Corollary 2 For any debt contract R with repayment dates Q = {t1, t2, ..., tN}, there is a rollover

implementation by a sequence of zero coupon bonds. The first bond has a face value of Ft1 = KD

maturing at date t1. The ith (i � 2) bond has a face value of Fti = K(Fti�1 � Rti�1) maturing at

date ti. This implementation is dynamically consistent in the sense that at each rollover date, the

firm has no strict incentive to issue a di↵erent debt contract.

One implication of Corollary 2 is that in our baseline model, debt capacity is maximized by

rolling over short-term debt. This result therefore echoes and extends the classic insight (Bolton

and Scharfstein (1990, 1996) and Hart and Moore (1998)) that short-term debt alleviates financing

constraints arising from non-verifiable cash flows. Empirically, this result implies that mature firms

(i.e., risky period cash flows but no cash-flow growth) maximize debt capacity by issuing short-term

9As stated in Corollary 2, this rollover implementation is dynamically consistent. For models in which there are
incentives to shorten maturity ex post to dilute existing creditors, see Brunnermeier and Oehmke (2013) and He and
Milbradt (2016).
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debt. Interestingly, as we show in Section 4, this result no longer holds under more general cash

flow distributions, where limiting short-term debt may be necessary to maximize debt capacity.

3 Empirical Implications

In this section, we discuss the key empirical implications of our baseline model. Specifically, we

investigate how the cash flow risk, profitability, and leverage a↵ect debt structure: the number of

repayments, the spacing between repayments, and the duration of the optimal repayment schedule.

To analyze debt duration, we calculate the expected average repayment time of the optimal

debt contract (i.e., similar to Macaulay duration), which is given by

ART ⌘
PN

i=1 ti
Rti
Ki

D

. (12)

One slight complication when analyzing debt duration is that, as shown in Proposition 1, the

exact repayment amounts at each repayment date, and therefore the average repayment time ART ,

are generally not pinned down uniquely.10 We therefore calculate both the longest and shortest

ART as follows.

Lemma 2 Given any sustainable amount D of outside financing, the longest average repayment

time

supART = [T � j � (N � 1)K] +
1

D

"

N�2
X

i=1

�

K

i�1
i+

j�

K

N�1
(N � 1)

#

(13)

is attained by back loading repayments: Rti = K� for all 2  i  N � 1, RtN = j�, and

Rt1 = K(D �
PN�2

i=1
�
Ki � j�

KN ). The shortest average repayment time

inf ART = (T � j)� 1

D

N�2
X

i=0

�

K

i�1
(N � 1� i) (14)

10Repayment dates are uniquely determined, but except at the boundaries between cases there are a number of
repayment amount schedules that raise the required amount of outside financing.

18



is attained by front loading repayments: Rti = K� for all i  N�1 and RtN = K

N
⇣

D �
PN�2

i=0
�
Ki

⌘

.

3.1 Cash Flow Risk

Our first set of empirical predictions relates to the riskiness of cash flows, which in our model is

captured by the parameter K. The e↵ect of cash flow risk on the optimal debt contract is an im-

mediate corollary of Proposition 1: When cash flow becomes riskier, the repayment profile becomes

lumpier, with higher individual promised payments (K�) and longer time intervals (K) between

two repayment dates. In addition, maximum pledgeable income with N repayments (PI(N)) is

decreasing in cash-flow risk. As a result, to raise the same amount of outside financing, a firm with

riskier cash flows needs to spread its debt repayments across more repayment dates. Combined

with the longer intervals between repayments, this implies that the entire repayment profile of the

optimal debt contract extends forward. Consequently, debt duration decreases when risk increases.

Proposition 2 As cash-flow risk K increases, holding all other parameters including D constant,

the number of repayments #Q weakly increases; the time between two repayments increases; and

debt duration (in terms of both inf ART and supART ) decreases.

The prediction that cash flow risk is associated with earlier debt repayment has broad support

in the empirical literature on debt maturity. Stohs and Mauer (1996) find that riskier firms (as

measured by lower EBITDA volatility) have shorter maturity debt. Barclay and Smith (1995)

document that higher volatility of asset returns (implied from equity returns) correlates negatively

with the fraction of debt that matures in more than three years. Guedes and Opler (1996) document

that higher industry volatility of ROA growth is negatively correlated with maturity.

Our model also provides a potential framework to assess the dispersion in corporate debt matu-

rity profiles documented in Choi et al. (2016), who show that higher rollover risk after the Ford/GM

downgrade in 2005 led to more dispersed new debt issuance. Consistent with this finding, in our

model higher K, which increases the likelihood for the firm of not being able to roll over its debt,
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leads to a debt structure with more repayment dates. However, note that the firm does not, in fact,

reduce rollover risk by o↵ering more repayment dates. Rather, to raise the same amount of outside

financing in the presence of higher rollover risk, firms have to o↵er more repayments because each

individual repayment is less likely to be made.

3.2 Profitability

Second, we examine the e↵ect of the profitability of the investment project on debt structure. The

expected period cash flow � is a natural measure for profitability. However, given the binary cash

flow structure, a change in � also a↵ects the variance of the period cash flow, �2 (K � 1). To

analyze the marginal e↵ect of higher profitability, we therefore increase � while holding cash flow

variance constant by reducing K. This reduction in K means that in this comparative static the

results in Proposition 2 are flipped. In particular, the debt profile of a more profitable company

features fewer repayments and shorter intervals between repayment dates. Consequently, profitable

firms structure their debt into fewer repayments that are concentrated towards the end of the

project’s life. Debt duration of profitable firms is therefore longer.

Proposition 3 As the expected period cash flow � increases, holding cash flow variance �2 (K � 1)

and all other parameters constant, the number of repayments weakly decreases, the time between

risky repayments decreases, and supART increases. Finally, when K � 4, also inf ART increases.

The main empirical prediction of Proposition 3 is that higher profitability is associated with

more backloaded repayments. This prediction is consistent with the evidence that profitability is

generally associated with longer debt maturity. For example, Qian and Strahan (2007) find that

more profitable firms (as measured by net income divided by assets) borrow longer-term. Similarly,

Guedes and Opler (1996) show that less profitable firms (as measured by larger operating loss

carryforwards) tend to have debt of shorter maturity.
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3.3 Leverage

Finally, we analyze the e↵ect of leverage. The easiest way to analyze higher leverage in our model

is through a reduction of the firm’s cash resources c. Less cash at hand directly translates into a

higher require amount of outside financing D = I � c, while leaving the NPV of the firm’s project

unchanged. From Proposition 1, we know that the entrepreneur can increase the amount raised by

issuing debt in three ways: (i) by increasing promised repayments within a given case N-j; (ii) by

moving existing repayment dates forward (an increase in j); and (iii) by adding more repayment

dates (an increase in N). In the latter two scenarios, the optimal debt contract becomes more

short-term, in the sense that the average repayment time of the optimal debt contract decreases.

Debt duration therefore unambiguously decreases whenever an increase in leverage requires adding

a new repayment date or moving forward an existing repayment date . When the entrepreneur

simply raises face values for a given set of repayment dates (i.e., within a given case N-j), things are

slightly more complicated. In this case, the longest average repayment time supART is decreasing

in D, while the shortest average repayment time inf ART is increasing in D. This asymmetry

happens because to attain supART , repayments are back loaded and a higher D increases the first

repayment, which shortens ART . On the other hand, repayments are front loaded under inf ART ,

and a higher D therefore increases the last repayment, which lengthens ART . Taken together, we

arrive at the following proposition.

Proposition 4 Holding all other parameters constant, an increase in leverage (higher D) weakly

increases the number of repayments N . Moreover, higher leverage leads to a decrease in the average

repayment time of the optimal debt contract across cases N-j, i.e., whenever the increase in D

changes the payment dates Q. Within a given case N-j, the longest average repayment time supART

is decreasing in D while the shortest average repayment inf ART is increasing in D.

Empirically, our model therefore predicts that the debt structures of highly levered firms are

more front-loaded, with more repayment dates. As a result, high leverage is predicted to be
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associated with shorter debt duration. This finding is consistent with the evidence on the debt

structure of leveraged buyout deals in Axelson et al. (2013), who document that repayment profiles

of buyout deals are more frontloaded during times when deals are highly levered. In contrast,

Barclay and Smith (1995) and Stohs and Mauer (1996) document a negative correlation between

leverage and debt maturity. One reason for this di↵erence may be that buyouts, where the entire

repayment structure is optimized at the time of the deal, more closely correspond to the setting in

our paper than looking at snapshots of the average maturity of existing debt or new debt issuances.

4 Cash Flow Growth and Positive Low Cash Flow

In this section, we add two features to our baseline model. First, in Section 4.1 we allow for growth

in the project’s cash flow. Second, in Section 4.2 we allow for positive cash flow in the low cash-flow

state. We will show that, in contrast to the results in Section 2.3, in both of these cases, pledgeable

income is generally no longer maximized by o↵ering as many risky repayments as possible. Rather,

pledgeable income is generally largest under a contract that limits the number of risky repayment

dates to strictly less than the maximum feasible number. Depending on the situation, the resulting

contract then resembles risky long-term debt or a combination of safe short-term and risky long-

term debt.

4.1 Cash Flow Growth

Suppose that the positive cash flow realizations grow at the rate µ > 1. Specifically, at any date

t 2 T , the cash flow is given by Xt 2 {Kµ

t�, 0}. As in the baseline model, the probability of

receiving a positive cash flow Kµ

t� at date t is 1
K , such that the expected cash flow at date t is

µ

t�.

This cash flow distribution di↵ers from the baseline model mainly in that the maximum feasible

repayment now depends on the time when the particular repayment is made. In contrast, in the

baseline model, the maximum feasible repayment is K�, which is time-invariant. The specification
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with growth in cash flow may be particularly relevant for young firms, growth firms, and other

situations in which the firm’s capacity to produce cash flow increases over time.

Similar to the baseline model, where we assumed thatK is an integer, we now make an analogous

assumption on the pair of (K,µ).

Assumption 1 There exists m 2 Z+ such that

K =
m
X

s=1

µ

s
. (15)

Assumption 1 ensures that it is incentive compatible for the firm to repay the maximum feasible

amount Kµ

t� at t, if the next m periods’ cash flows are left to the entrepreneur,

Kµ

t� = µ

t+1�+ µ

t+2�+ ...+ µ

t+m�,

where m is an integer. As a result, it is incentive compatible for the entrepreneur to repay Kµ

t�

every m periods.

Some of the main insights from the baseline model remain valid with growth in cash flow. As

before, the entrepreneur would like minimize the number of risky repayments and schedule them

as late as possible, subject to maintaining incentive compatibility. Moreover, once the firm starts

making repayments, these are constantly spaced. The slight di↵erence is that cash-flow growth

allows risky repayments to be scheduled closer to each other, at intervals of m < K.

Despite these similarities, one key implication of the baseline model changes when we allow for

growth in cash flow. Whereas in the baseline model pledgeable income is maximized by scheduling as

many repayments as possible (recall equation (10)), in the presence of cash flow growth, increasing

the number of repayments no longer necessarily increases pledgeable income. To see this, note

that the key to increasing pledgeable income by introducing an additional repayment is that the

value of existing repayments, which are shifted forward to accommodate the additional repayment,

remains unchanged. As illustrated in Figure 4, this is no longer the case when there is cash flow
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Figure 4: In the presence of cash-flow growth, shifting forward existing repayments and adding an
additional repayment can reduce pledgeable income. Existing repayments that are shifted forward
need to be reduced by the growth factor µ to preserve feasibility. The resultant reduction in the
value of all existing repayments outweighs the extra pledgeable income generated by the additional
repayment (equal to 1

KN µ

T�) when the number of existing repayments N is su�ciently large.

growth. In particular, when cash flows grow over time, positive cash-flow realizations are smaller

in earlier periods, such that existing repayments have to be scaled down when they are shifted

forward. Therefore, whether adding an additional repayment increases pledgeable income depends

on which e↵ect dominates, the decrease in the value of existing repayments that are being shifted

forward or the value of the additional repayment that is added at the end.

When the number of existing repayments N is large, the reduction in expected repayments

from the first N repayment dates dominates: Shifting forward the existing N repayments by one

period reduces their values by the growth factor µ. On the other hand, the value of the additional

repayment (e.g. µ

T� at date T in Figure 4) is weighted by the probability that the firm survives

past the first N repayments, 1
KN , and therefore becomes arbitrarily small when N is large. As a

result, for large N a further increase in the number of repayments decreases pledgeable income.

Pledgeability is then maximized with N

⇤ repayments, where N⇤
> 0 is given by the smallest integer

such that
2

4(µ�1 � 1)K
N⇤+1
X

j=1

�

Kµ

�m
�j

3

5+ 1 < 0. (16)

Because µ�1�1 < 0 and Kµ

�m
> 1, N⇤ is well defined and unique. Importantly, N⇤ is independent
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Figure 5: When there is growth in cash flow, pledgeable income is generally maximized with a fixed
number of N⇤ repayments towards the end of the project.

of T . Therefore, even when the number of possible repayment dates T grows large, pledgeability

continues to be maximized with a fixed number of N⇤ repayments, as illustrated in Figure 5.

Proposition 5 In the model with growing cash flows (µ > 1),

1. the maximum pledgeable income PI(N) is maximized at N⇤ for any T su�ciently large;

2. for any N  N

⇤, the maximum pledgeable income with N repayments PI(N) is

PI(N) =
N�1
X

i=0

µ

T�(N�i)m

K

i
�;

3. for any N  N

⇤, if D 2 (PI(N � 1), P I(N)], the optimal debt contract has N repayment

dates and has the first repayment date t1 � T �Nm;

4. for any N  N

⇤, if D = PI(N), there is a unique optimal debt contract characterized by

Rt =

8

>

>

<

>

>

:

µ

t
K�, if t 2 {T �m,T � 2m, ..., T �Nm}

0, otherwise.

One implication of Proposition 5 is that for some firms it may never be optimal to schedule

more than one repayment, regardless of the financing need D:

Corollary 3 When 1 >

1
K + µ

�m, the maximum number of repayment dates N

⇤ is 1.
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From Proposition 5 and Corollary (3), we see that in the presence of cash-flow growth, the

optimal debt contract resembles long-term debt. Independent of the project’s horizon T , all re-

payments occur in the final N⇤
m periods. In particular, as T becomes large, the earliest possible

repayment date under the optimal debt contract, T � N

⇤
m, approaches T , in the sense that

limT!1
T�N⇤m

T = 1.

The finding that long-term debt can maximize pledgeability puts an interesting twist on our

understanding of the role of short-term debt in increaseing pledgeability via a termination threat. In

two period models, for the threat of termination to be credible, debt essentially has to be short-term,

one-period debt. When many repayment dates are possible, on the other hand, it is possible that

the debt maturity that maximizes pledgeability roughly matches the project’s horizon, especially

when T is large. Depending on parameters, our model can therefore capture both, incentives to

finance with short-term debt (leading to maturity mismatch) and incentives to finance with longer

term debt (approximate matching of the maturities of assets and liabilities).

4.2 Positive Low Cash Flow

In this section, we extend the model to allow for a risk-free cash flow component L. Specifically,

assume that the cash flow distribution Xt is binary with a high cash flow of L+K� with probability

1
K and a low (but positive) cash flow of L with complementary probability. The average per-period

cash flow is �+ L. As before, we assume that � > 0, and that K > 1 is an integer.

Obviously, if D  (T � 1)L, the optimal debt structure is to repay by risk-free cash flows up

to L at every t 2 {1, 2, ..., T � 1}. One can also easily verify that any risk-free repayment profile is

indeed incentive compatible. More generally, Proposition 6 shows that when the risk-free cash-flow

component is su�ciently large, it is never optimal to use risky debt, and pledgeable income is

maximized by making a risk-free repayments at every date, as illustrated in Figure 6.

Proposition 6 If

L � �

K � 1
, (17)
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Figure 6: When L � �
K�1 , pledgeable income is maximized by making a risk-free repayment of L

every period.

then the risk-free schedule Rt = L for all t 2 {1, 2, ..., T � 1} maximizes pledgeable income.

The intuition behind Proposition 6 is as follows. The benefit of increasing the repayment

beyond the risk-free level is that the entrepreneur pays back more when the high cash flow realizes,

which improves pledgeable income. However, this risky repayment also generates default risk,

which hurts the expected value of the current as well as all subsequently scheduled repayments.

Therefore, risky repayments are never optimal when the risk-free cash flow L is large compared to

the expected benefit of adding a risky repayment component of �, as implied by condition (17). In

addition, condition (17) is more likely to hold when cash flow risk is large (high K). In this case,

default risk is higher, so that risk-free debt is more likely to be optimal.

For the remainder of this section, we assume (17) does not hold, in order to focus on the case

in which introducing risky repayments can increase pledgeability. As in the case with cash-flow

growth analyzed in Section 4.1, some of the baseline results continue to hold. Specifically, all

risky repayments continue to be scheduled towards the end of the project. In addition, in order

to minimize the number of risky repayments, every risky repayment is set to the entire high cash

flow realization of K�+L, and risky repayments are spaced K periods apart. However, similar to

the case with cash-flow growth, we again find that, when there is a risk-free cash-flow component,

pledgable income is usually maximized by limiting the number of risky repayments, in this case to

N

⇤⇤
> 0, where N

⇤⇤ is the smallest integer such that

�+ L

K

N⇤⇤+1
< L.
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Figure 7: When L <

�
K�1 , pledgeability is maximized by limiting the number of risky repayment

dates to N

⇤⇤
. Risky repayments are scheduled towards the end of the project and spaced K periods

apart.

We summarize these finding in the following proposition.

Proposition 7 In the presence of a risk-free cash flow component L,

1. the maximum pledgeable income PI(N) is maximized with N

⇤⇤ repayment dates for any T

su�ciently large;

2. for any N  N

⇤⇤, the maximum pledgeable income is

PI(N) = (T �NK)L+
N
X

j=1

�+ L

K

j�1
;

3. for any N  N

⇤⇤, if D 2 (PI(N � 1), P I(N)], the optimal debt contract has N repayment

dates, and the first risky repayment will be made at t1 � T �NK;

4. for any N  N

⇤⇤, if D = PI(N), there exists a unique optimal contract that is characterzied

by

Rt =

8

>

>

<

>

>

:

K�+ L, if t 2 {T �K,T � 2K, ..., T �NK}

L otherwise.

Part 3 of Proposition 7 shows that in the presence of a risk-free cash flow component, scheduling

as many risky repayments as possible does not generally maximize pledgeability. While this result is

similar to the case with cash-flow growth, the intuition for limiting the number of risky repayments

is di↵erent. As the entrepreneur moves the repayment schedule forward by one period to increase

risky repayments, she sacrifices one period with a risk-free repayment of L. The contribution
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to the firm’s pledgeable income from the final risky repayment is weighted by the probability of

making this repayment 1
KN (if there are N risky repayments). Therefore as N becomes very large,

the benefit from the last risky repayment diminishes exponentially, and the cost of sacrificing a

risk-free repayment of L dominates.11

Part 4 of Proposition 7 shows that a risk-free cash-flow component leads to incentives to partially

smooth repayments over time. While the firm continues to only o↵er periodic risky repayments (if

any), the firm pays out the risk-free cash flow component L every period.

As in the baseline model, the optimal debt structure can be implemented in a number of ways.

In particular, analogous to the rollover implementation discussed in Corollary 2, in the presence

of a (relatively small) safe cash-flow component, the optimal debt structure can be implemented

by rolling over a sequence of coupon bonds with a fixed coupon of L and declining face values Ft,

where t denotes the maturity date of the bond (at the maturity date, both a coupon and the face

value are paid).

Corollary 4 For any debt contract R characterized by part 4 of Proposition 7, there exists a

rollover implementation by a sequence of coupon bonds with a fixed coupon L. The first coupon

bond has a face value of FT�NK = K [D � (T �NK)L] � L maturing at date T � NK. The ith

(i � 2) bond has a face value of FT�(N�i+1)K = K

⇥

FT�(N�i+2)K �K (�+ L)
⇤

� L maturing at

date ti. This implementation is dynamically consistent in the sense that at each rollover date, the

firm has no strict incentive to issue a di↵erent debt contract.

11This result is quite robust. For example, we show in Section 5.2 that, for large class of general cash flow
distributions, pledgeability is maximized by limiting the number of risky repayments. In particular, the entrepreneur
generally does not “smooth out” risky repayments over the entire lifespan of the project.
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5 Extensions

5.1 Allowing for Savings

Up to now, we have assumed that the entrepreneur can only use contemporaneous cash flow to

make repayments. In this section, we relax this assumption and sketch how our analysis generalizes

to the case in which the entrepreneur can save.

The main di↵erence relative to the the baseline model in Section 1 is that the entrepreneur can

now use cash flows realized in previous periods to make repayments at a later date.12 This has two

key implications. First, savings make it feasible for the entrepreneur to make payments that exceed

the period cash flow; Rt could be strictly greater than K�. Second, savings introduce a non-trivial

trade-o↵ between repayment amounts and default risk. Specifically, when the entrepreneur can

save, it can be optimal to o↵er smaller repayments at a later date in order to allow the firm to

accumulate cash, making these repayments less risky. Consequently, the firm may o↵er repayments

smaller than K�, spaced strictly less than K periods apart.

In the remainder of this section, we discuss these two e↵ects of savings in turn and show that,

under certain conditions, the two key features of the model without savings, repayments of K�

spaced K periods apart, remain optimal even when the entrepreneur can save.

First, we show that it is never optimal to o↵er repayments strictly greater than K�, even when

the ability to save makes this possible. To see this, consider a single, larger repayment of Rt = 2K�.

For simplicity, suppose this is the last repayment. For this repayment to be incentive compatible, it

must occur on or before date T�2K, otherwise the surplus left to the entrepreneur after making this

repayment would be less than 2K�, violating incentive compatibility. Now consider splitting up

this single repayment into two repayments of K� at dates T �2K and T �K. It is easy to see this

new schedule is incentive compatible. More importantly, though, splitting the repayment strictly

improves the payo↵ to the entrepreneur: For any realization of cash flows, if the entrepreneur can

12In that respect, introducing savings is similar to allowing for callable debt, something we also ruled out in our
baseline model.
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repay 2K� at date T � 2K, she can also make the two repayments of K� under the new schedule.

But the new schedule allows the entrepreneur strictly more time (and thereby a higher chance) to

repay the second K�. Therefore, there are cash flow realizations under which the entrepreneur is

liquidated under the original schedule, but not under the adjusted schedule. By this logic, one can

show that any debt contract with any individual repayment greater than K� is strictly dominated,

as stated by the following proposition.

Proposition 8 In the optimal debt contract with savings, any individual repayment Rt is weakly

smaller than K�.

Second, we consider the firm’s incentive to o↵er payments of less than K� spaced less than K

periods apart. To do so, we start with the contract that maximizes pledgeable income in the baseline

model, namely repayments of K� every K periods, starting from date 1. Note that the expected

value of the first repayment, which is made with probability 1
K , is �. Now consider moving this first

repayment to date 2, leaving the remaining repayment schedule unchanged and reducing the first

repayment to (K � 1)� to preserve incentive compatibility. Even though the first repayment

is now smaller, the probability of making this smaller repayment at date 2 is strictly higher:

1�
�

1� 1
K

�2
>

1
K . As a result, the present value of the first repayment

h

1�
�

1� 1
K

�2
i

(K � 1)�

is greater than that under the original schedule � when K > 2. In addition, under the adjusted

repayment schedule, the continuation probability at the first repayment date is higher, making all

future repayments more valuable.

The previous example shows that, under some conditions, savings can alter the structure of

repayments of size K� every K periods. In particular, when leverage is high, such that the first

repayment is relatively early, an additional period to accumulate savings has a large e↵ect on the

probability of making the first repayment. In this case, the optimal repayment schedule with savings

will di↵er from the optimal repayment schedule in the baseline model. For lower leverage, on the

other hand, the first repayment is not that early and the basic repayment structure of the baseline

model (repayments of K� every K periods once repayments start) is still optimal, even when the
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entrepreneur can save. Of course, the ability to save leads to less default along the equilibrium

path relative to the baseline model.

5.2 General Cash Flow Distribution

In this section, we briefly discuss the role of the binary cash flow distribution. In particular, we

show relatively weak conditions under which the key result in section 4, that the entrepreneur wants

to limit the number of repayment dates, carries over to more general cash flow distributions.

Proposition 9 Suppose the cash flow distribution F (X) has the following properties:

There exists some positive cash flow level L > 0 such that

1. X � L holds with probability 1;

2. F (L) = ✏ > 0;

3. X has finite expectation.

Then for any T su�ciently large, any repayment profile that maximizes pledgeable income has

strictly less than 2N⇤ risky repayments, where N

⇤
> 0 is the smallest integer that satisfies

L

E(X)
> max{(1� ✏)N

⇤�2
, 2(1� ✏)2N

⇤�1}. (18)

According to Proposition 9, the cash flow distribution needs to satisfy two main properties such

that limiting the number of repayment dates is optimal. First, the period cash flow distribution

has a positive lower bound L and, second, there is a mass point at L. (The third conditions simply

makes sure that the expected period cash flow is well defined.) Note that these conditions are

relatively weak. For example, any discrete cash flow distribution with strictly positive support

satisfies these requirements.

The intuition for Proposition 9 is essentially the same as Part 3 of Proposition 7: The benefit of

an additional risky repayment is weighted by the survival probability, which decreases exponentially

with the number of risky repayments. The cost of an additional risky repayment, on the other hand,
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is constant; the entrepreneur sacrifices one a risk-free repayment of L. Therefore, at some point

adding another risky repayment reduces pledgeable income.

6 Conclusion

This paper provides a model of optimal debt structure. Building on the insights of the literature on

debt as a termination threat, which as mostly worked in two-date settings, our multi-period model

generates rich implications on the optimal number, timing, and size of payments to creditors.

The optimal debt structure is determined by a simple trade-o↵ between providing the firm with

incentives to repay and preventing costly early liquidation.

The model generates a rich set of empirical predictions: Depending on the required amount of

outside financing and the cash-flow characteristics of the firm, the resulting debt structures can

resemble a sequence of risky short-term debt contracts (firms with stable expected cash flow and

large outside financing needs), long-term debt (growth firms) and safe short-term debt (firms with

a significant safe cash-flow component), or a combination of safe short-term debt and risky bonds

or loans (firms with a moderate safe cash-flow component).
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A Omitted Proofs

Proof of Lemma 1: Because Q(R) = Q(R0), and Xt is either K� or 0, equation (6) implies that
Pr(Xt � Rt) = Pr(Xt � R

0
t) for any t. Therefore,

T
X

t=0

t�1
Y

s=0

Pr (Xs � Rs)� =
T
X

t=0

t�1
Y

s=0

Pr (Xs � R

0
s)�.

In addition, since D(R) = D(R0), it follows from equation (5) that R and R0 will lead to the same V0.
Therefore, the entrepreneur is indi↵erent between R and R0.

Proof of Proposition 1: We prove this proposition by a series of claims.

Claim 1: For any two incentive compatible debt contracts, R and R0, if D(R) = D(R0) and Q ⇢ Q0, then

the entrepreneur strictly prefers R. Put di↵erently, other things equal, the entrepreneur wants to reduce

the number of repayments.

To see this, first note that since D(R) = D(R0), it follows from Lemma 1 that V0(R) > V0(R0) if and
only if

T
X

t=0

t�1
Y

s=0

Pr (Xs � Rs)��
T
X

t=0

t�1
Y

s=0

Pr (Xs � R

0
s)� > 0.
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Because Q ⇢ Q0, Pr (Xs � Rs) � Pr (Xs � R

0
s) for all s 2 T . However, since at least one element in Q0

does not belong to Q, there is at least one s

0 2 T such that Rs0 = 0 and R

0
s0 2 (0,K�]. Hence, at s

0,
Pr (Xs0 � Rs0) = 1 > 1/K = Pr (Xs0 � R

0
s0). Therefore, the entrepreneur strictly prefers R.

Claim 2: Denote by #Q(R) the number of repayments of the debt contract R and by % the vector of
the repayment dates. If D(R) = D(R0), #Q(R) = #Q(R0), and % > %

0 (that is, any element of % is greater
than or equal to %

0, and at least one element of % is strictly greater than the corresponding element of %0),
then the entrepreneur strictly prefers R. Put di↵erently, if two incentive compatible debt contracts have the
same value and the same number of repayments, the entrepreneur prefers the one with late repayments.

Because % > %

0, for any t,
t�1
Q

s=0
Pr (Xs � Rs) �

t�1
Q

s=0
Pr (Xs � R

0
s), and there exists a repayment date

tj 2 Q(R) that comes strictly later than the corresponding repayment date t

0
j 2 Q(R0). Then, at tj ,

tj�1
Q

s=0
Pr (Xs � Rs) >

tj�1
Q

s=0
Pr (Xs � R

0
s). Therefore, the entrepreneur strictly prefers R.

We next prove Corollary 1 as a lemma for Proposition 1, even though for exhibition purposes, the result
is stated in the paper as a corollary.

Before proving the corollary, we state a repeatedly used adjustment procedure to the debt contract as a
lemma.

Lemma 3 Suppose ti, tj 2 Q(R) are two repayment dates, with Rtj < K�. Define “(ti, tj , ✏) adjustment”
to be the following procedure to construct a new contract R0: R0

ti = Rti � ✏ and R

0
tj = Rtj +

✏
Ki�j , leaving all

other repayments unchanged. Then, the value of debt is unchanged, D(R0) = D(R). In addition, if ti > tj,
then R0 is also incentive compatible.

Proof of Lemma 3: First, it is straight forward from (4) that D(R0) = D(R). Next, if ti > tj , let V 0

be the entrepreneur’s continuation value under contract R0. It is clear from (3) that V

0
t � Vt holds for all

t and strictly for tj < t  ti. In particular, V 0
tj+1 = Vtj+1 +

✏
Ki�j , so condition R

0
tj  V

0
tj+1 still holds. IC

conditions for other repayments are trivially satisfied.
Proof of Corollary 1: Consider any debt contract R with #Q(R)  n�1 first. Let the ith repayment

date be ti 2 Q. Note that the maximum amount of any single repayment is K�; and Rti is actually paid if
and only if Xt⌧ = K� for all ⌧  i, which happens with probability 1/Ki. Therefore, the maximum total
expected repayments of R with at most n� 1 repayments is

n�1
X

i=1



1

K

i
(K�)

�

= �
n�2
X

j=0

1

K

i
< D

by equation (11). Hence, investor’s IR constraint (1) implies that there must be at least n repayments:
#Q(R) � n.

Next, we show that any contract R with #Q(R) = n+k, where k � 1, can be strictly improved. Suppose
there is a positive integer j < n+ k such that Rtj < K�. Then, we can apply (n+ k, j, ✏) adjustment until
either all initial n+ k � 1 repayments equal K� or the last one repayment R0

tn+k
= 0. In the first case,

n+k
X

j=1



1

K

j
Rtj

�

>

n+k�1
X

j=1



1

K

j
(K�)

�

� D,

so the total expected value of repayments exceeds D, contradicting the IR constraint (1). In the second
case, the entrepreneur can eliminate the last repayment without a↵ecting the value of debt. By Claim 1, the
adjusted repayment schedule is strictly preferred. Hence, we establish Corollary 1.
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Now, we prove Proposition 1. If D satisfies (9), then it automatically satisfies (11). Corollary 1 implies
that the optimal debt contract will include exactly N repayments. Denote the optimal debt contract by R⇤.

Next, we inductively prove that the ith repayment occurs at t⇤i = T � j � (N � i)K. We first establish
the statement for i = N , namely t

⇤
N = T � j. Consider any debt contract R whose last repayment date is

later than T � j. The incentive compatibility constraint implies that RtN  (j � 1)�. However, since the

expected value of the first N � 1 repayments is at most
PN�2

i=0
�
Ki (attained when every repayment is K�),

D 
PN�2

i=0
�
Ki +

(j�1)�
KN , violating equation (9).

Consider any debt contract R with the last repayment date tN < T � j. We can apply (tN , ti, ✏)
adjustment until Rti = K� for all i < N . After such an adjustment, condition (9) implies RtN  j�. So,
the entrepreneur can delay RtN to T � j without a↵ecting incentive compatibility and the value of debt,
which by Claim 2, makes entrepreneur strictly better o↵. Hence, in R⇤, t⇤N = T � j.

Suppose t

⇤
s = T � j � (N � s)K for all s � i + 1. We now prove the statement for t

⇤
i . First, starting

from R⇤, we can apply (t⇤i , t
⇤
l , ✏) adjustment for all l < i, until Rtl = K�. Next, apply (t⇤i , t

⇤
l , ✏) adjustment

for all l > i, until Rt⇤l
= K� (if l < N) or j� (if l = N). By Lemma (3), both adjustments do not a↵ect the

value of debt, and the first one is incentive compatible. It is easy to see that the second adjustment is also
incentive compatible because the induction assumption implies that Vt⇤l

= K� (or j�) for all i < l < N (or
l = N).

After the adjustment,

Rt⇤i
=

0

@

D �
N�2
X

l=0,l 6=i�1

�

K

l
� j�

K

N

1

A

K

i
.

From (9), Rt⇤i
2
�

K�� �
KN�i ,K�

⇤

⇢ ((K � 1)�,K�]. Therefore, IC condition for Rt⇤i
implies that

t

⇤
i  t

⇤
i+1 �K. If t⇤i < t

⇤
i+1 �K, we can simply move Rt⇤i

to a later date: t

⇤
i+1 �K. It is easy to see that

such an adjustment does not a↵ect the value of debt and is still incentive compatible. By Claim 2, the new
contract dominates R⇤, contracting with the optimality of R⇤. Therefore, the induction conclusion holds for
i and t

⇤
n = T � j � (N � n)K for any n  N in R⇤.

Finally, when D =
PN�2

i=0
�
Ki + j�

KN , we know from the previous proof that Q(R⇤) = {T � j, T � j �
K, . . . , T � j � (N � 1)K}. IC conditions imply that R

⇤
ti  K� for i < N and R

⇤
tN  j�. As a result,

D(R⇤)  D, with equality holding if and only if R⇤
ti = K� for i < N and R

⇤
tN = j�. This establishes the

uniqueness and completes the proof.

Proof of Lemma 2: Suppose D satisfies (9). Proposition (1) uniquely determines the set of repayment
dates. Suppose supART is attained by some schedule R other than the one specified in the lemma. Then,
there must exist an i 2 [2, N � 1] such that Rti < K�, or i = N and Rti < j�. Given such an i, consider

an alternative schedule R0 given by a (t1, ti, ✏) adjustment. It is clear that when ✏ <

K��Rti
KN (or

j��RtN
KN if

i = N), schedule R0 is still incentive compatible. By Lemma 3, D(R0) = D(R). The adjusted schedule R0

increases ART :

ART (R0)�ART (R) =
✏(ti � t1)

KD

> 0.

Contradiction! So supART is uniquely attained by RtN = j�, Rti = K� for all i 2 [2, N � 1], and
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Rt1 = K(D �
PN�2

i=1
�
Ki � j�

KN ). Substituting these into equation (12) implies

supART

=
1

D

(

(D �
N�2
X

i=1

�

K

i
� j�

K

N
)(T � j � (N � 1)K)

+
N�2
X

i=1

�

K

i
(T � j � (N � 1� i)K) +

j�

K

N
(T � j)

)

=(T � j)� 1

D

"

N�2
X

i=0

�

K

i�1
(N � i� 1)� (N � 1) (K��Rt1)

#

=(T � j)� 1

D

"

N�2
X

i=0

�

K

i�1
(N � i� 1) +K (N � 1)

 

D �
N�2
X

i=0

�

K

i
� j�

K

N

!#

,

which is equivalent to equation (13).

Similarly, in order to attain inf ART , the entrepreneur wants to front-load repayments, so that the
weights on earlier repayment dates are as large as possible. This is done by setting Rti = K� for all

i  N � 1 and RtN = K

N
⇣

D �
PN�2

i=0
�
Ki

⌘

. Substituting these into equation (12) implies

inf ART (D)

=

N�2
X

i=0

�
Ki (T � j � (N � 1� i)K) + (D �

PN�2
i=0

�
Ki )(T � j)

D

=(T � j)� 1

D

N�2
X

i=0

�

K

i�1
(N � 1� i),

which is exactly equation (14).

Proof of Proposition 2: Corollary 3 together with the fact that �
N�1
P

i=0

1
Ki is decreasing in K directly

imply that #Q is weakly increasing in K. It follows from Proposition 1 that if ti, ti+1 2 Q, then

ti+1 � ti = K. So, it is obvious that the time interval between two consecutive repayments is strictly

increasing in K.

We now study inf ART and supART as K increases to K + 1. Let’s first consider inf ART . Similarly
to Proposition 4, there are two cases.

Case 1: Suppose Q does not change as K increases to K + 1. When N = 1, inf ART does not change,
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because j does not change. For N � 2, we have (noting that K � 2 by assumption)

D [inf ART (K)� inf ART (K + 1)]

=
N�2
X

i=0

�

(K + 1)i�1
(N � 1� i)�

N�2
X

i=0

�

K

i�1
(N � 1� i) (19)

=(N � 1)�+
N�2
X

i=2



�

(K + 1)i�1
� �

K

i�1

�

(N � 1� i)

��(N � 1)

"

1 +
N�2
X

i=2



1

(K + 1)i�1
� 1

K

i�1

�

#

>�(N � 1)

"

1�
1
X

i=1

1

K

i

#

� 0. (20)

Therefore, when K increases to K + 1 and Q does not change, inf ART decreases, strictly so if N � 2.
Case 2: Suppose Q changes as K increases to K + 1. It directly follows equation (14) that inf ART

is a decreasing with respect to N and j respectively. Denote by NK and jK the equilibrium outcome in
Proposition 1 given K. If NK+1 � NK and jK+1 � jK , then inf ART (K + 1) < inf ART (K). Because we
have establishedNK+1 � NK , so we only need to show that ifNK+1 > NK and jK+1 < jK , inf ART (K+1) <
inf ART (K). This is proved below. From equation (14), we have

inf ART (K + 1)� inf ART (K)

=(jK � jK+1)�
1

D

2

4

NK+1�2
X

i=0

�

(K + 1)i�1
(NK+1 � 1� i)�

NK�2
X

i=0

�

K

i�1
(NK � 1� i)

3

5

=(jK � jK+1)�
1

D

2

4

NK+1�2
X

i=NK�1

�

(K + 1)i�1
(NK+1 � 1� i) +

NK�2
X

i=0

�

(K + 1)i�1
(NK+1 �NK)

NK�2
X

i=0

�

(K + 1)i�1
(NK � 1� i)�

NK�2
X

i=0

�

K

i�1
(NK � 1� i)

#

<K � 1

D

2

4

NK+1�2
X

i=NK�1

�

(K + 1)i�1
(NK+1 � 1� i) +

NK�2
X

i=0

�

(K + 1)i�1
(NK+1 �NK)

3

5

K � K

D

2

4

NK+1�2
X

i=0

�

(K + 1)i
+

1

K

NK+1�2
X

i=0

�

(K + 1)i

3

5

K � K

D

2

4

NK+1�1
X

i=0

�

(K + 1)i

3

5  0

Here, the first inequality is true because of equation (20), and the last inequality is due to the fact that

D 
PNK+1�1

i=0
�

(K+1)i . Therefore, inf ART decreases in K. This concludes the proof of Case 2 and the
analysis of inf ART .

We now turn to supART . It follows from equation (13) that supART can be rewritten as
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supART = [T � j � (N � 1)K] +
1

D

"

N�2
X

i=1

�

K

i�1
i+

j�

K

N�1
(N � 1)

#

.

Obviously, if the increase in K does not change Q, supART will decrease. Otherwise, suppose the increase
in K leads to a change of Q. Similar to the proof for inf ART , one can verify supART is decreasing in
N and j respectively. As a result, if NK+1 � NK and jK+1 � jK , then supART (K + 1) < supART (K).
Finally, we prove the result for NK+1 > NK and 1  jK � jK+1  K � 1:

supART (K + 1)� supART (K)

K(NK + 1)�NK+1(K + 1)

+
1

D

2

4

NK+1�2
X

i=1

�

(K + 1)i�1
i+

jK+1�

(K + 1)NK+1�1
(NK+1 � 1)�

NK�2
X

i=1

�

K

i�1
i� jK�

K

NK�1
(NK � 1)

3

5

.

Let’s consider the terms in the bracket. First,

1

D

2

4

NK+1�2
X

i=1

�

(K + 1)i�1
i+

jK+1�

(K + 1)NK+1�1
(NK+1 � 1)

3

5

=(K + 1)NK+1
1

D

0

@

NK+1�2
X

i=0

�

(K + 1)i
+
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(K + 1)NK+1

1

A

� 1

D

(K + 1)

0

@

NK+1�2
X
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Therefore,

supART (K + 1)� supART (K)
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.

Note, the second term in the bracket is 0 if NK  3; in such a case, simple mathematical induction can show
that supART (K + 1) < supART (K). When NK � 4, we first have

�NK+1�+
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◆
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1

(K � 1)K
� 1

K

NK�2

�

< 0.

This inequality, combined with the fact that

� 2�

(K + 1)NK+1�3
+

jK+1�

(K + 1)NK+1�1
< � 2�

(K + 1)NK+1�3
+

(K + 1)�

(K + 1)NK+1�1
< 0,

implies that supART (K + 1) < supART (K). Hence, the conclusion holds for any NK+1 > NK and
jK+1 < jK . In all, supART decreases in K.

Proof of Proposition 3: Assume the variance of per-period cash flow is a constant: �2 (K � 1) = ↵

2 for

some constant ↵ > 0. Denote the solution by �K = ↵p
K�1

, which is decreasing in K. Therefore, and

ti+1 � ti = K is decreasing in �. In addition, �
N�1
P

i=0

1
Ki = �

N�1
P

i=0

1⇣
↵2

�2 +1
⌘i is increasing in �, so Corollary 3

implies that #Q is decreasing in �.

In the remainder of the proof, we show both inf ART and supART increase as � increases. We only
consider the increase in � that decreases K to a smaller integer. Without loss of generality, we focus on the
comparison between ART (�K+1) and ART (�K).
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We first show that if K � 4, and an increase in � from �K+1 to �K does not a↵ect Q, then inf ART

increases. From (14),
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(K + 1)2

K

� 1p
K � 1

K

2

K � 1

�

One can verify that the last expression as a function of K is negative when K � 4. Therefore, for fixed N

and j, when � increases from �K+1 to �K , inf ART increases.
Next, we consider the case when an increasing in � changes Q. By the same arguments in Proposition 2,

we only need to show that when jK � jK+1  K�1 and NK+1 � NK +1, inf ART (�K+1) < inf ART (�K).
This is established below:
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Therefore, when � increases from �K+1 to �K , inf ART increases.
We now show that the same property holds for supART . Let’s first consider the case that Q does not
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change. From (13),

supART = [T � j � (N � 1)K] +
↵

D

"

N�2
X
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K

i�1
p
K � 1

i+
j

K

N�1
p
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(N � 1)

#

.

When � increases from �K+1 to �K without changing Q, supART increases, because supART is strictly
decreasing in K. Similarly, if NK+1 � NK and jK+1 � jK , supART also increases in �. Hence, we only
need to show that the same property holds in the case that jK � jK+1  K � 1 and NK+1 � NK + 1.
Similarly to the proof of Proposition 2, we have

supART (K + 1)� supART (K)
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In the last inequality, the sum of the first three terms is negative when K � 4, and the sum of the last term is
less than 0 as in the proof of Proposition 2. Therefore, under the condition that K � 4, supART (�K+1) >
supART (�K). This completes the proof.

Proof of Proposition 4: Corollary 3 directly implies that #Q is weakly increasing in D. In the rest of

the proof, we study inf ART (D) and supART (D) as D increases.

Let’s begin with inf ART . There are two cases depending on whether D is at the boundary of (9).
Case 1: Both D and D + ✏ satisfy (9) for some common N and j; that is, the increase in D does not

change Q. From equation (14), we have

inf ART (D + ✏) = (T � j)� 1

D + ✏

N�2
X

i=0

�

K

i�1
(N � 1� i) > inf ART (D).

Hence, when D increases and the set of repayment dates does not change, inf ART (D) is strictly increasing
in D.

Case 2: Suppose D =
PN�2

i=0
�
Ki +

j�
KN for some N and j = 0, 1, ...,K� 1. In this case, when D increases

to D+ ✏, the last repayment moves one period forward from T � j to T � (j+1). Note that here we slightly
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abuse notation by equivalencing Case (N-1)-K in (9) and “Case N-0”. We then have

lim
✏!0

inf ART (D + ✏) = (T � (j + 1))� 1

D

N�2
X

i=0

�

K

i�1
(N � 1� i) = inf ART (D)� 1.

Therefore, when the increase in D leads to an earlier last repayment date (but keeps the number of repay-
ments), inf ART discretely drops by 1.

In sum, inf ART is not continuous in D. In particular, when D is in the interior of a case, inf ART (D)
is continuously increasing in D. At any boundary of (9), inf ART (D) is left-continuous, but drops discretely
by one when D increases marginally.

Let’s now turn to supART . Similarly, there are again two cases.
Case 1: Both D and D+ ✏ satisfy (9) for some common N and j. It then follows from equation (13) that

supART (D + ✏)� supART (D) < 0,

because
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X
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i
� j�
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< 0.

Therefore, if the increase in D does not change Q, supART (D) is strictly decreasing in D.

Case 2: Suppose D =
PN�2

i=0
�
Ki +

j�
KN for some N and j = 0, 1, ...,K � 1. When D marginally increases

to D + ✏, the equilibrium debt contract then features #Q = N and tN = T � (j + 1). Therefore,
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=supART (D)� 1 +
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Therefore,
lim
✏!0

supART (D + ✏) 2 (inf ART (D)� 1, inf ART (D))

because supART (D) = inf ART (D) and
�

KN (N�1)K

D < 1.
Therefore, we conclude that supART (D) is strictly decreasing in D if the marginal change of D does not

change Q; however, when the marginal increase in D leads to a di↵erent set of repayment dates, supART

has a discrete drop. The magnitude of the drop, however, is smaller than that of inf ART .
Finally, we prove the claim that a higher leverage leads to a decrease in the average repayment time of

the optimal debt contract across cases N � j. Formally, denote by DN,j the financing needs that lead to a
contract with N repayments and the last repayment at T � j; then, supART (DN,j+1) < inf ART (DN,j).
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Consider two boundary financing needs D̄N,j�1 =
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(j�1)�
KN and D̄N,j =
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KN . We have
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Here, the last inequality is due to the fact that
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K(N � 1)�

K

N�1
� 2(N � 1)�

K

N�1

�

�0,

because K � 2. This completes the proof.

Proof of Proposition 5:

Part 1: Consider a debt contract R with #Q(R) = 1 first. We claim that the repayment date t = T �m

maximizes PI(1). To see this, we note thatRt has two upper bounds. First, Rt  Kµ

t�, due to the feasibility
constraint; and second, Rt  Vt+1 for the contract to be incentive compatible. Note that

Vt+1 =
T
X

s=t+1

µ

s� = µ

t
T�t
X

s=1

µ

s�.

Hence, 8t 2 [T �m,T ),

Vt+1 
 

m
X

s=1

µ

s

!

µ

t� = Kµ

t�,

and so the incentive compatibility constraint must be binding to attain the maximum pledgeable income; that
is, Rt = Vt+1. Since Vt+1 is strictly decreasing in t, when t 2 [T �m,T ), in order to achieve the maximum
pledgeability, the repayment date must be T �m, and the maximum pledgeable income is Kµ

T�m�.
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Now, consider t  T �m. Then,

Vt+1 �
 

m
X

s=1

µ

s

!

µ

t� � Kµ

t�.

So the feasibility constraint must be binding to maximize PI(1). Because Kµ

t� is strictly increasing in
t, in order to achieve the maximum pledgeability, the repayment date must be T � m, and the maximum
pledgeable income is Kµ

T�m�. Combining both cases, if #Q(R) = 1, PI(1) = Kµ

T�m�, which is attained
by making the only repayment at date T �m. By the same arguments, we show that for a debt contract R,
if tj 2 Q and Rtj = Vtj+1 (i.e., Vtj = µ

tj�), then the maximum repayment at the (j � 1)th repayment date
occurs at tj �m.

Now, let’s consider PI(2). For any debt contract R with #Q(R) = 2, suppose t2 = T � q. It follows
from the proof of the one repayment contract that q  m. Then, in order to attain the maximum pledgeable
income, the entrepreneur can first set

Rt2 = Vt2+1 =
T
X

s=T�q+1

µ

s�.

As a consequence, t1 = t2 �m. Denote by PI

q(N) the maximum pledgeable income of a contract with N

repayments and the last repayment occurs at date T � q. Then,
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T�q�m�
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So,
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�1 +
µ

m

K

2
> 1. (21)

Suppose equation (21) holds, then PI

q(2) is strictly increasing in q. Hence,

PI(2) = PI

m(2) = µ

T�2m�+
µ

T�m�

K

.

Let’s now compare PI(2) and PI(1) under equation (21).

I(2) > I(1) , µ

�m +
1

K

> 1. (22)

Note that, by equation (15), we have

K � K

µ

=
m
X

s=1

µ

s �
m�1
X

s=0

µ

s = µ

m � 1. (23)

Then, equation (22) is equivalent to 1� µ

m + µm

K > 0, which holds if and only if K
µ �K + µm

K > 0. The last

inequality is equivalent to equation (21). So, when n = 2, PI(2) = PI

m(2) if and only if PI(2) > PI(1).
We now use induction. Assume that PI(n) = PI

m(n) if and only if PI(n) > PI(n � 1), where n � 2.
Let’s consider n + 1. Fix any tn+1 = T � q. When the contract can attain the largest pledgeable income,
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Rtn+1 = VT�q+1. Then, by the assumption that PI(n) = PI

m(n), we have
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Now, suppose equation (24) holds, then PI(n+ 1) = PI

m(n+ 1). We then have
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It then follows from equation (23) that

1� µ

m =
K

µ

�K.

So, equation (25) and equation (24) are equivalent. Therefore, if PI(n+1) = PI

m(n+1), PI(n+1) > PI(n).
Note that equation (24) is equivalent to
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4(µ�1 � 1)K
n
X
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�

Kµ
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3
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So, it follows from equation (16) that if and only if N  N

⇤, PI(N) � PI(N � 1). Therefore, PI(N) is
maximized at N = N

⇤.
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Part 2: Because for any N  N

⇤, PI(N) = PI

m(N). Therefore,

PI(N) =
N�1
X

i=0

µ

T�(N�i)m

K

i
�.

Part 3: Now, suppose D 2 (PI(N � 1), P I(N)]. By the definition of PI(N), since D > PI(N � 1),
it is impossible to design a contract with at most N � 1 repayment dates such that the investor’s IR
constraint holds. But D  PI(N), so there exists a contract with N repayment dates such that the
investor’s participation constraint holds.

Consider any contract R with #Q = N + p (p 2 Z+). Without loss of generality, we only consider
contracts with Rt = Kµ

t�, 8t 2 Q \ {tN+p}. Otherwise, if Rtj < Kµ

tj�, the entrepreneur can make the
(tN+p, tj , ✏) adjustment, until either Rtj = Kµ

tj� or RtN+p = 0. The former case is under consideration,
while in the latter case, the entrepreneur is strictly better o↵. Note, in this process, the contract’s incentive
compatibility and the investor’s participation constraint are preserved.

We now first claim that for any tj , tj+1 2 Q \ {t1}, tj+1 � tj � m. Let tj 2 Q be the last repayment
date at which tj+1 � tj < m. Because the original debt contract R is incentive compatible, it follows from
the definition of m in equation (15) and Rs = Kµ

s� for all s 2 Q \ {tN+p} that

Rtj  Vtj+1,

,
tj+m
X

s=tj+1

µ

s� 
tj+1
X

s=tj+1

µ

s�+
1

K

N+p�j

0

@

T
X

s=tN+p+1

µ

s��RtN+p

1

A

,RtN+p 
T
X

s=tN+p+1

µ

s��K

N+p�j

tj+1+`
X

s=tj+1+1

µ

s�,

where ` = tj +m� tj+1 � 1. If tN+p + 1 = T ,

RtN+p


T
X

s=tN+p+1

µ

s��K

N+p�j

tj+1+`
X

s=tj+1+1

µ

s�

=µ

tj+1

"

µ

T�tj+1��K

N+p�j
X̀

s=1

µ

s�

#

<�µ

tj+1

h

µ

(N+p�(j+1))m+1 � µ

(N+p�j)m+1
i

< 0,

where the first strict inequality is again due to the definition of m in equation (15). Such an inequality
contradicts to the assumption that RtN+p > 0 in the original contract, and so tN+p + 1 < T .

Then, the entrepreneur can construct a new contract R0 such that R

0
tN+p

= 0, R0
tN+p+1 = RtN+p , and

R

0
s = Rs for all other s. That is, the last repayment is delayed to date tN+p + 1. Let’s check the incentive
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compatibility of the new contract R0. Under R0, at date tN+p + 1, we have

V

0
tN+p+2 �R

0
tN+p+1

=V

0
tN+p+2 �RtN+p

�
T
X

s=tN+p+2

µ

s��

0

@

T
X

s=tN+p+1

µ

s��K

N+p�j

tj+1+`
X

s=tj+1+1

µ

s�

1

A

>

⇣

K

N+p�j � µ

(N+p�j�1)m
⌘

µ

tj+1+1� > 0.

Hence, the incentive compatibility constraint holds at date tN+p+1. Because ts+1� ts = m for all s � j+1,
the incentive compatibility constraint holds at all these dates. At tj , because V

0
tj+1 > Vtj+1 (since all

subsequent repayment amounts are unchanged, and the last repayment is delayed), V 0
tj > Vtj ; then, the

incentive compatibility of R implies the incentive compatibility of R0. Importantly, the investor’s participa-
tion constraint does not change. Therefore, R0 satisfies both incentive compatibility constraint and investor
participation constraint. Finally, because V

0
tj > Vtj , and all repayments before tj are the same in R and R0,

R’ is strictly better than R. This implies that our original assumption tj+1 � tj < m is invalid.
We then only need to consider a contract with tj+1 � tj � m for any tj , tj+1 2 Q\{t1}. Since tN+p < T

and p � 1, tN+p � (N + p� j)m < T � (N � j + 1)m. Hence, if the entrepreneur o↵ers a contract R0 with
#Q0 = N , the j

th repayment day could be T � (N � j + 1)m, which is late than the j

th repayment date in
the original contract R. Therefore, there exists R0 with #Q0 = N that is strictly better than R. Therefore,
when D 2 (PI(N � 1), P I(N)], the optimal contract has exactly N repayment dates. In addition, since
tj+1 � tj = m and T � tN  m, the first repayment date t1 � T �Nm.

Part 4: WhenD = PI(N), the optimal debt contract must have tN = T�m, because PI(N) = PI

m(N).
Then, #Q = {T � m,T � 2m, ..., T � Nm}. In addition, to attain the maximum pledgeable income, the
entrepreneur must make the largest repayment at each repayment date, so Rt = Kµ

t�, implying that the
schedule proposed is the unique one to attain D = PI(N), which can be attained by the repayment schedule

Rt =

(

µ

t
K�, if t 2 {T �m,T � 2m, ..., T �Nm}

0, otherwise.

Proof of Corollary 3: Consider the left-hand side of equation (16) when N = 1, we have

2

4(µ�1 � 1)K
N
X

j=1

�

Kµ

�m
�N�j+1

3

5+ 1 = (µ�1 � 1)K(Kµ

�m). (26)

Note that (µ�1 � 1)K = 1� µ

m, equation (26) becomes Kµ

�m �K + 1, which is negative because

1 >

1
K + µ

�m. So when 1 >

1
K + µ

�m, N⇤ = 1.

Proof of Proposition 6: Suppose on the contrary that a risky contract R maximizes the value of debt.

Denote by t  T � 1 the last risky repayment date. Construct a new contract R0 such that R0
s = Rs for all

s < t or s > t+ 1, R0
t = L, and R

0
t+1 = Rt+1 +max(0, Rt ��� L) < Rt.

The new contract R0 is incentive compatible because for any s,

V

0
s � (�+ L) +

1

K

(V 0
s+1 �Rs) � �+ L,
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so all risk-free repayments R0
s  L when s > t+1 are automatically incentive compatible. In addition, R0

t+1 is
incentive compatible because either R0

t+1 = Rt+1, in which case IC trivially holds, or R0
t+1 = Rt+1+Rt���L

and
V

0
t+2 = Vt+2 = Vt+1 +Rt+1 � (�+ L) � Rt +Rt+1 � (�+ L) = R

0
t+1.

Finally, note that

V

0
t � Vt

�


2(�+ L)� L+
V

0
t+2 �R

0
t+1

K

�

�


(�+ L) +
Vt+2 + (�+ L)�Rt+1 �Rt

K

�

=�+
Rt+1 +Rt � (�+ L)�R

0
t+1

K

> 0,

Therefore, we can recursively show that V 0
s > Vs for all s  t and R

0
s = Rs is thereby incentive compatible.

Next we show D(R0) > D(R). This is because when (17) holds,

D(R0)�D(R) � L+
Rt+2 +max(0, Rt ��� L)

K

� Rt+1 +Rt+2

K

� L� �+ L

K

> 0.

Contradiction with the maximality of R. Therefore, risk-free schedule Rs = L maximizes pledgeability.

Proof of Proposition 7: We prove this proposition in four parts.

Part 1: Let N be the number of risky repayments. We show that the value of any repayment profile
with N 6= N

⇤⇤ can be strictly improved. Let’s first consider a contract R with N > N

⇤⇤. Suppose tN < T

is the last risky repayment date. If there is a t < t1 2 Q, such that Rt < L, the entrepreneur can simply
set R

0
t = L to increase the value of the contract. If t 2 (tj , tj+1), the entrepreneur can apply the (tj , t, ✏)

adjustment, until either R0
t = L or R0

tj = 0. In the former case, the value of the contract does not change; in
the latter case, the value of the contract will increase, because all repayment after tj become less risky. Note
that in the adjustment process, the incentive compatibility is preserved. Hence, without loss of generality,
we can consider the debt contract R, in which at any t /2 Q, Rt = L. The entrepreneur can then apply the
(tj , tj+1, ✏) adjustment for tj , tj+1 2 Q, such that the incentive compatibility constraint is binding at each
risky repayment date. (Here, we take tN+1 = T . It is possible that tj+1 � tj > K, and so the incentive
compatibility at tj+1 cannot be binding. However, in this case, the entrepreneur can just set R0

tj+1
= L and

R

0
tj+1+1 = K�+ L to increase the value of the contract.) This is guaranteed one-by-one from the last risky

repayment date. In addition, the value of the contract does not change in the adjustment process. Therefore,
below, we only need to show that a contract R with Rs = L for all s /2 Q and Rt = Vt+1 for all t 2 Q can
be strictly improved.

We can construct a new contract R0: R0
s = Rs for all s < t1 and s > tN + 1, R0

t1 = L, R0
s+1 = Rs for all

s 2 [t1, tN � 1], and R

0
tN+1 = (T � (tN + 1))�+ L. (If tN + 1 = T , R0

tN+1 = 0. This case will be nested in
the following proof.) Since Rs = L for all s 2 [tN + 2, T � 1] and RT = 0, V 0

tN+2 = (T � (tN + 1))� + L.
Hence, the incentive compatibility constraint is binding at tN + 1. What’s more, V 0

tN+1 = VtN = � + L.
Therefore, at each previous date, the incentive compatibility constraint is binding.
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Hence, we just need to show that D(R0) > D(R). Note that

D(R0)�D(R)

�R

0
t1 +

R

0
tN+1

K

N
� RtN +RtN+1

K

N

=L+
(T � (tN + 1))�� ((T � tN )�+ L)

K

N

=L� �+ L

K

N
> 0

Here, the first inequality is strict when tN + 1 = T , and the last inequality is due to the definition of N⇤⇤.
Next, consider the case with N < N

⇤⇤. Without loss of generality, we assume that Rs = L for all s < t1.
The entrepreneur can construct the following new contract R0: R0

s = Rs for all s < t1 �K, R0
s = Rs+K for

all s 2 [t1 � K,T � 1 � K], R0
T�K = K� + L, and R

0
s = L for all s > T � K. Since there are K periods

after date T �K, R0
T�K is incentive compatible. In addition, because R

0
T�K = K�+ L and R

0
s = L for all

s > T �K, V 0
T�K = �+L; hence, at any repayment date s < T �K, R0 is incentive compatible because R

is incentive compatible.
Note that N < N

⇤⇤, and so L < (�+ L)/KN+1. Therefore, we have

D(R0)�D(R) =
K(�+ L)

K

N+1
�KL > 0,

Hence, the pledgeable income after adding the extra risky repayment increases. Therefore, PI(N) is maxi-
mized at N⇤⇤.

Part 2: In the remainder of the proof, we assume N  N

⇤⇤. When N = 1, to maximize the value of the
debt, obviously IC condition must be binding at the risky repayment date t1, and that at any date s < t1,
Rs = L. First, it is easy to see that t1 � T �K; otherwise, because Rs  L for all s > t1, so

Vt1+1 � (T � t1)�+ L > K�+ L � Rt1

and IC condition cannot possibly bind. For any t1 > T �K, we can construct a new contract R0: Rs = L

for all s 6= T �K, and R

0
T�K = K�+ L. This is obviously incentive compatible. Now,

D(R0)�D(R)

=
K(�+ L)

K

�


(t1 � (T �K))L+
(T � t1)(�+ L)

K

�

=(K � (T � t1))

✓

�+ L

K

� L

◆

.

Hence, D(R0)�D(R) � 0, because t1 � T�K and N  N

⇤⇤. Note that the inequality is strict if t1 > T�K;
hence, PI(1) is uniquely attained by Rt1 = K�+ L at date t1 = T �K, and Rs = L at date s 6= t1. Then,
PI(1) = (T �K)L+ (�+ L).

Now, let’s consider any N  N

⇤⇤ and consider a contract R with #Q = N . Fixing all repayments at
dates s � t2, we have Vt2+1 � Rt2 by the incentive compatibility of R. Then, as the same argument of the
case N = 1, the value of the contract is maximized when t1 = t2 �K, Rt1 = K�+ L, Rs = L for all s < t2

but s 6= t1. We can now increase the value of the contract by increasing Rt2 to Vt2+1. Similarly, fixing all
repayments at dates s � tn for all n  N , the value of the contract is maximized by setting tj = tj �K for
all j < n, Rtj = K� + L at date tj for all j < n, and Rs = L at dates s < tn but s 6= tj for any tj < tn.
Then, finally, because RT = VT+1 = 0, the contract’s value is maximized by setting tN = T �K.
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Therefore, in order to maximize the pledgeable income, the entrepreneur needs to make risky repayment
at dates t = T � iK, where i = 1, 2, . . . , N . In addition, at each risky repayment date, the risky repayment
should be K� + L, such that both the feasibility constraint and the incentive compatibility constraint
binding; at other dates, the entrepreneur needs to repay L. Therefore, the maximum pledgeable income of
a debt contract with N repayment dates is

PI(N) = (T �NK)L+
N
X

j=1

�+ L

K

j�1
.

Part 3: For any N  N

⇤⇤, if D 2 (PI(N � 1), P I(N)], by the definition of PI(N), the entrepreneur
cannot use a contract with at most N � 1 repayment dates to attain D, but she can use a contract with N

repayment dates to attain D.
Now, we show that a contract with N + p repayments, where p � 1, can be strictly improved. The first

step is to show that at all dates when the entrepreneur does not make risky repayment, the entrepreneur
repays L. Suppose there is one date t such that Rt < L. If t is earlier than the first risky repayment t1, the
entrepreneur apply the (t, t1,✏) adjustment by setting R

0
t = Rt + ✏ and R

0
t1 = Rt1 �K✏. Then, the investor’s

participation constraint does not change, and the entrepreneur is at least as good as before (strictly better if
R

0
t1  L after the adjustment). If t 2 (tj , tj+1), then the entrepreneur can make the (tj , t, ✏) adjustment by

setting R

0
tj = Rtj � ✏ and R

0
t = Rt + ✏. Such an adjustment will not change the incentive compatibility and

the investor’s participation constraint either; again, the entrepreneur is at least not worse o↵. Hence, when
consider the optimal debt contract, the entrepreneur will repay L when she does not make risky repayments.
Then, the rest of the proof is the same as that of Corollary 1 by iterated application of the (tN+p, ti, ✏)
adjustments.

As shown above, in the optimal debt contract, tj+1 � tj  K and tN � T � K; otherwise, if some
tj < tj+1 � K (we can denote by tN+1 = T ), it is strictly better for the entrepreneur to set R

0
tj = L and

R

0
tj+1 = Rtj . Such a new contract is still incentive compatible, because the value between tj + 1 and tj will

be greater than or equal to K(�+ L). Therefore, t1 � T �NK.
Part 4: For any N  N

⇤⇤, if D = PI(N), the optimal debt contract will have exactly N risky repayment
dates. Then, by Part 2, to attain D by a contract with N risky repayment dates, the entrepreneur has to
repay K�+ L at dates ti = T � iK (for i = 1, 2, . . . , N) and repay L at all other dates. Therefore, there is
a unique optimal contract that attains D, which is

Rt =

(

K�+ L, if t 2 {T �K,T � 2K, ..., T �NK}
L otherwise.

Proof of Proposition 8: Consider a repayment schedule with Rt > K� for some t 2 Q. Let Rtj be the
last repayment with Rtj > K�. There are two cases. First, the repayment schedule has exactly j

repayments, and so Rtj is also the last repayment. Then,

T � tj =

⇠

Rtj

�

⇡

> K;

otherwise, Rtj > Vtj+1, violating the incentive compatibility constraint. Then, fix all previous j � 1

repayments (the time and the amount), the entrepreneur may consider the following adjustment:

R

0
tj = K� and R

0
tj+K = Rtj �K�. Such a new repayment schedule is still incentive compatible;

otherwise, if R0
tj+K > Vtj+K+1 = (T � tj �K)�, Rtj > (T � tj)� = Vtj+1, violating the assumption that

the original repayment schedule is incentive compatible.

53



Because the first j � 1 repayments do not change, if the entrepreneur can repay Rtj at date tj , he is
able to make the repayments R

0
tj and R

0
tj+K (because of saving). Indeed, there is a positive probability

that the entrepreneur cannot repay Rtj but can make the repayments R

0
tj and R

0
tj+K , because the project

may generate positive cash flows between tj + 1 and tj +K. In addition, because of saving, the investor’s
participation constraint is also satisfied. Therefore, the entrepreneur can even reduce R

0
tj+K to a certain

R

00
tj+K and still keep the investor’s participation constraint satisfied.
Now, let’s compare Vtj and V

0
tj . Denote by St the total funds the entrepreneur can use to make repayment

at date t. We can calculate

Vtj = �+ Pr
�

Stj � Rtj

� �

�Rtj + (T � tj)�
�

and

V

0
tj

=�+ Pr
⇣

S

0
tj � R

0
tj

⌘n

�R

0
tj +K�

+Pr
⇣

S

0
tj+K � R

00
tj+K |S0

tj � R

0
tj

⌘⇣

�R

00
tj+K + (T � tj �K)�

⌘o

=�+ Pr
⇣

S

0
tj � R

0
tj

⌘⇣

�R

0
tj +K�

⌘

+ Pr
⇣

S

0
tj � R

0
tj

⌘

Pr
⇣

S

0
tj+K � R

00
tj+K |S0

tj � R

0
tj

⌘⇣

�R

00
tj+K + (T � tj �K)�

⌘

As we argued above, the same first j � 1 repayments imply that Stj = S

0
tj , and then because of Rtj =

R

0
tj +R

0
tj+K > R

0
tj , if Pr

⇣

Stj � R

0
tj

⌘

> 0,

Pr
⇣

Stj � R

0
tj

⌘

� Pr
�

Stj � Rtj

�

.

In addition, if Stj � Rtj , then Stj �R

0
tj = R

0
tj+K > R

00
tj+K , and so

Pr
⇣

Stj � R

0
tj

⌘

Pr
⇣

S

0
tj+K � R

00
tj+K |Stj � R

0
tj

⌘

> Pr
�

Stj � Rtj

�

.

These imply that

V

0
tj

>�+ Pr
�

Stj � Rtj

�

⇣

�R

0
tj +K�

⌘

+ Pr
�

Stj � Rtj

�

⇣

�R

00
tj+K + (T � tj �K)�

⌘

>�+ Pr
�

Stj � Rtj

�

⇣

�R

0
tj +K��R

0
tj+K + (T � tj �K)�

⌘

=Vtj

Hence, the adjustment makes the entrepreneur strictly better o↵.
In the second case, the repayment schedule has more than j repayments. Then, by assumption, all

repayments after date tj are at most K�. The entrepreneur can then make all the repayments after date tj

as late as possible, until that delaying one of these repayments one date will violate the incentive compatibility.
Then, the entrepreneur can iteratedly apply the (ti�1, ti, ✏) adjustment for all i � j beginning from i = N (the
last repayment), such that the incentive compatibility constraint binding at each repayment date after date
tj . The entrepreneur will not be worse o↵ by this adjustment, for the same reason as in the first case. Suppose
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now that Rtj is still strictly greater than K�. Then, Vtj+1 = (tj+1 � tj)�, and tj+1 � tj =
l

Rtj

�

m

> K.

Hence, the same argument in the first case will prove that such a contract is not optimal for the entrepreneur.

Proof of Proposition 9: First, N⇤ is well defined because the LHS of (18) is a constant and the RHS

decreases to 0, as N⇤ ! 1.

The proof is by contradiction. Let {Ri|i = 0, 1, 2, ..., T} be any repayment profile that attains the
maximum pledgeable income, with risky payments (strictly greater than L) at dates {t1, t2, ..., tN}. Suppose
on the contrary that N � 2N⇤. Before proving the proposition, we first introduce a key procedure that we
use repeatedly.

For any fixed K, define risk-free modification with respect to day K to be the following procedure that
constructs a new repayment profile R̃i(K): For all t > K or t < t1, R̃t ⌘ Rt; R̃t1 ⌘ L; and for all t1 < t  K,
R̃t ⌘ Rt�1. Essentially, this modification removes repayment RK ; shifts all repayments between t1 and K

one period backward; and inserts a risk-free repayment of L at date t1. The repayment profile changes from

R = {R0, R1, ..., Rt1�1, Rt1 , Rt1+1, ..., Rt2 , ..., RK�1, RK , RK+1, ..., RT }

to
R̃(K) = {R0, R1, ..., Rt1�1, L,Rt1 , ..., Rt2 , ..., RK�2, RK�1, RK+1, ..., RT }.

The expected payo↵ to the borrower at the beginning of date t is

Vt =
T
X

i=t

"

E(Xi)
i�1
Y

s=t

Prob(Xs � Rs)�Ri

i
Y

s=t

Prob(Xs � Rs)

#

,

and the expected payo↵ to the lender is still defined by equation (4).
Let R̃(tn) be the risk-free modification w.r.t. tn with n > N

⇤, i.e. there are at least N

⇤ prior risky
payments. By the definition of such a modification and equation (4), the expected value of the modified
repayment profile is

D(R̃(tn)) =
Pt1�1

t=0 Rt + L

+
Ptn�1

t=t1
Rt
Qt

i=0 Prob(Xi � Ri)

+
PT

t=tn+1 Rt
Qt

i=0,i 6=tn
Prob(Xi � Ri).

Compare it with D(R) in (4), the di↵erence is

D(R̃(tn))�D(R) = L�Rtn

Qtn
i=0 Prob(Xi � Ri)

+
PT

t=tn+1 Rt

h

Qt
i=0,i 6=tn

Prob(Xi � Ri)�
Qt

i=0 Prob(Xi � Ri)
i

� L�Rtn

Qtn
i=0 Prob(Xi � Ri).

First note that RtnProb(Xtn � Rtn) is weakly dominated by E(Xtn). In addition, there are at least N⇤ risky
repayment before tn and the survival probability with each risky payment Prob(Xt > Rt)  Prob(Xt >

L) = 1� ✏. As a result, the di↵erence D(R̃(tn))�D(R) is at least

D(R̃(tn))�D(R) � L� (1� ✏)N
⇤
E(Xtn) > 0 (27)

by the definition of N⇤. Therefore, R̃(tn) is a repayment profile that is strictly more valuable to the investor.
However, it may not be incentive compatible.

Now we prove the original proposition. There are two cases depending whether or not there exists a
risky payment Rt � E(Xt) for some t 2 {tN⇤+1, tN⇤+2, ..., tN}.
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Case 1: Suppose there exists an tn 2 {tN⇤+1, tN⇤+2, ..., tN} such that Rtn � E(Xtn).
In this case, we show that R̃(tn) is actually incentive compatible, namely R̃t  Ṽt+1 for all t, where Ṽ is

the payo↵ to the borrower with the modified schedule. Combined with condition (27), the modified schedule
R̃(tn) gives the desired contradiction to the optimality of R.

First, the IC conditions R̃t  Ṽt+1 are not a↵ected when t > tn because the payments R̃t = Rt and
consequently Ṽt = Vt. Next, we show Ṽt+1 � Vt � E(Xt) for all t1 < t  tn by induction method. Note that
for any t, Vt � E(Xt), which is a direct result from IC (Rt  Vt+1) and the recursive formulation of Vt:

Vt = E(Xt) + Prob(Xt � Rt)(�Rt + Vt+1) � E(Xt).

Combined with the presumption that we are in case 1, we have:

Vtn = E(Xtn) + Prob(Xtn � Rtn)(�Rtn + Vtn+1)
 E(Xtn)(1� Prob(Xtn � Rtn)) + Prob(Xtn � Rtn)Vtn+1

 Vtn+1 = Ṽtn+1.

This establishes the initial step of the induction. Now suppose Vs  Ṽs+1 holds for some t1 + 1 < s  tn,
and we want to show Vs�1  Ṽs. From the induction assumption and the fact that R̃s = Rs�1 in this region,
we have

Vs�1 = E(Xs�1) + Prob(Xs�1 � Rs�1)(�Rs�1 + Vs)
 E(Xs) + Prob(Xs � R̃s)(�R̃s + V̂s+1)
= Ṽs.

This completes the induction proof. IC for all t1 < t  tn follows immediately:

R̃t = Rt�1  Vt  Ṽt+1.

Finally, by definition of t1, all repayments before t1 are risk free. Mathematically, for all t  t1, R̃t  L 
E(Xt). It is easy to show by induction that Ṽt � E(Xt) also holds for all t  t1. Therefore, IC also holds
when t  t1. We have verified the IC condition for the modified schedule R̃(tn) for all t = 1, 2, ..., T , and
thereby completing the proof of case 1.

Case 2: Suppose all repayments at tN⇤+1 are strictly smaller than E(Xt), i.e. Rt < E(Xt) for all
t � tN⇤+1.
Let R̂ be the risk-free modification to RT�1, except for R̂tN⇤+1+1, which is alternatively defined as

R̂tN⇤+1+1 = RtN⇤+1
� (1� ✏)N

⇤�2
E(XT�1). (28)

This is well defined because RtN⇤+1
� L is a risky payment, and condition (18) guarantees that R̂tN⇤+1+1 > 0.

Denote by V̂t the corresponding expected payo↵ to the borrower.

First, we show that the modified schedule R̂ is incentive compatible in three exhaustive cases, t > tN⇤+1,
tN⇤+1 � t > t1, and t  t1. Similar to Case 1, it is easy to show by induction that V̂t � E(Xt) for all
t > tN⇤+1. Because we are in Case 2, this result also means that IC holds strictly for all t > tN⇤+1.

Next we establish IC for t1 < t  tN⇤+1 . First, we show VtN⇤+1
 V̂tN⇤+1+1. When t1  t  T � 2 and

t 6= tN⇤+1, recall R̂t+1 = Rt, so

V̂t+1 � Vt = E(Xt+1) + Prob(Xt+1 � R̂t+1)(�R̂t+1 + V̂t+2)
� [E(Xt) + Prob(Xt � Rt)(�Rt + Vt+1)]

= Prob(Xt � Rt)(V̂t+2 � Vt+1).
(29)
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By iteration, we have

V̂tN⇤+1+2 � VtN⇤+1+1 =
T�2
Y

s=tN⇤+1+1

Prob(Xs � Rs)(V̂T � VT�1).

Because V̂T = E(XT ) and VT�1  E(XT�1) + E(XT ), together with the fact that there are at least
N �N

⇤ � 2 � N

⇤ � 2 risky repayments, so the above di↵erence is bounded below by

V̂tN⇤+1+2 � VtN⇤+1+1 � �(1� ✏)N
⇤�2

E(XT�1).

Now consider V̂tN⇤+1+1 � VtN⇤+1
. From the above lower bound and definition (28), we have

V̂tN⇤+1+1 � VtN⇤+1
= E(XtN⇤+1+1) + Prob(XtN⇤+1+1 � R̂tN⇤+1+1)(�R̂tN⇤+1+1 + V̂tN⇤+1+2)

�
⇥

E(XtN⇤+1
) + Prob(XtN⇤+1

� RtN⇤+1
)(�RtN⇤+1

+ VtN⇤+1+1)
⇤

� Prob(XtN⇤+1
� RtN⇤+1

)(�R̂tN⇤+1+1 +RtN⇤+1
+ V̂t+2 � Vt+1)

� Prob(XtN⇤+1
� RtN⇤+1

)[(1� ✏)N
⇤�2

E(XT�1)� (1� ✏)N
⇤�2

E(XT�1)]
= 0

Therefore, we have shown V̂tN⇤+1+1 � VtN⇤+1
. Combined with the iterative formula (29), we have V̂t+1 � Vt

hold for all t � t1 + 1, which in turn implies the desired IC condition:

V̂t+1 � Vt � Rt�1 � R̂t.

Finally, similar to case 1, when t  t1, all repayments R̂t are risk free which are in turn dominated by
E(Xt). It is also easy to inductively prove that V̂t � E(Xt). This completes the verification of incentive
compatibility of R̂.

Next, we prove that the modified schedule has an expected value D(R̂) that strictly dominates D(R),
thereby contradicting with the optimality of R and completing the proof. Write out D(R̂) explicitly:

D(R̂) =
Pt1�1

t=0 Rt + L+
PtN⇤+1�1

t=t1 Rt
Qt

i=1 Prob(Xi � Ri)

+R̂tN⇤+1+1Prob(XtN⇤+1+1 � R̂tN⇤+1+1)
QtN⇤+1�1

i=1 Prob(Xi � Ri)

+
PT�2

t=tN⇤+1+1 RtProb(XtN⇤+1+1 � R̂tN⇤+1+1)
Qt

i=1,i 6=tN⇤+1
Prob(Xi � Ri),

where R̂tN⇤+1+1 is related to RtN⇤+1
by (28). Because R̂tN⇤+1+1 < RtN⇤+1

, so

Prob(XtN⇤+1+1 � R̂tN⇤+1+1) � Prob(XtN⇤+1
� RtN⇤+1

).

Thus D(R̂) is bounded below by

D(R̂) �
Pt1�1

t=1 Rt + L+
PtN⇤+1�1

t=t1 Rt
Qt

i=0 Prob(Xi � Ri)

+R̂tN⇤+1+1
QtN⇤+1

i=0 Prob(Xi � Ri)

+
PT�2

t=tN⇤+1+1 Rt
Qt

i=0 Prob(Xi � Ri),

(30)
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From (4), (30), and (28), we have:

D(R̂)�D(R) � L�RT�1
QT�1

i=0 Prob(Xi � Ri)

+(R̂tN⇤+1+1 �RtN⇤+1
)
QtN⇤+1

i=0 Prob(Xi � Ri)

= L�RT�1
QT�1

i=0 Prob(Xi � Ri)

�(1� ✏)N
⇤�2

E(XT�1)
QtN⇤+1

i=0 Prob(Xi � Ri).

Because RT�1 < VT = E(XT ), and there are at least N � 2N⇤ and N

⇤ + 1 risky repayment in [1, T � 1]
and [1, tN⇤+1] respectively, the above lower bounded is in turn greater than

D(R̂)�D(R) � L� E(XT )(1� ✏)2N
⇤
� E(XT�1)(1� ✏)2N

⇤�1
> 0,

where the last inequality is from the definition of N⇤ in (18). This completes the proof of case 2 and the
proposition.
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